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Executive Summary 

With the growth of mobile and sensor devices, embedded systems, and communication technolo- 

gies, we are moving towards an era of pervasive computing. This project investigates some of the 

security challenges of pervasive computing and suggests possible solutions. 

Pervasive computing uses numerous, casually accessible, often invisible computing and sensor 

devices, that are frequently mobile or embedded in the environment and that are interconnected to 

each other with wired or wireless technology. Being embedded in the environment and strongly in- 

terconnected, allows pervasive computing to provide novel services and functionalities that use the 

knowledge of the surrounding physical spaces. However, it also brings novel security challenges 

to this new paradigm that can have very serious consequences. Thus, we need to understand the 

major security and privacy challenges and address these before pervasive computing technology 

can be widely deployed. 

Pervasive computing applications present some unique constraints that preclude the use of tra- 

ditional security policies and mechanisms from protecting such applications. First, pervasive com- 

puting applications typically involve many disparate entities, belonging to different organizations 

and interacting in complex and subtle ways. Second, the applications are very dynamic in nature 

with the entities and their interactions potentially changing at any given time. Third, pervasive 

computing applications use contextual information to provide better services; such information 

are often used by security mechanisms as well and, hence, must be adequately protected. Fourth, 

pervasive systems often involve devices with various computation and communication capabili- 

ties. Many of these are severely resource constrained, preventing execution of standard security 

mechanisms on them. The objective of this work is to address some of the security challenges that 

arise because of these constraints. This work focuses on four major aspects of security in pervasive 

computing that we summarize below. 

Policy and Trust Models for Pervasive Computing Applications 

Traditional access control models, such as, Discretionary Access Control (DAC), Mandatory 

Access Control, and Role-Based Access Control (RBAC), do not use contextual information, 

namely, space and time, for authorization. Towards this end, we propose a number of increas- 

ingly refined spatio-temporal RBAC models where the access decisions depend on the role of the 

user, her location, the object's location, and the time of access. The models that we develop have 
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a very sophisticated set features that allow them to express many different spatio-temporal access 

control constraints. However, they can also interact in many subtle yet complex ways. We show- 

how these features can be formally analyzed to study their interactions. We propose using an au- 

tomated tool called Alloy, that has embedded SAT-solvers. We have used this model to specify the 

access control policies of a real-world system - the Dengue Decision Support System that has been 

developed at Colorado State University. Further, to accommodate the dynamic nature of pervasive 

computing applications, we propose a graph-theoretic framework to represent the spatio-temporal 

access control model. This framework allows us to reason about security of the access control 

configuration changes during application execution. 

Pervasive computing applications involve interaction among various entities not all of which 

are equally trusted. The nature of interactions between entities depend on the trust relationship 

between them. Towards this end, we developed a new model of trust to characterize and quantify 

these trust relationships. Our model is based on subjective logic and allows one to reason about the 

uncertainty that arises in these interactions within pervasive computing applications. We demon- 

strate the use of this trust model for providing trust-based access control, finding a reliable path for 

propagating sensor data to processing nodes, and giving sensitive personal data to recipients over 

an untrusted network. 

Designing Secure Pervasive Computing Applications 

Pervasive computing applications are inherently complex. They must satisfy functional and 

non-functional requirements, such as, security. Security cannot be added as an afterthought but 

must be addressed from the very early stages of design. We demonstrate how aspect-oriented 

methodology can be used for designing secure applications. In this approach, the application is de- 

composed into modules on the basis of functionality and the security mechanisms are represented 

as aspects. We demonstrate how to methodically integrate the security aspects with the functional 

modules resulting in a design where security requirements have been adequately addressed. Often 

times, the same security requirement can be satisfied by different security solutions. The solutions 

may differ with respect to the amount of protection offered, time-to-market, budget and resource 

constraints. Trade-off analysis must be done to determine which solution best meets the project 

goal. We propose a new approach to do trade-off analysis that uses Bayesian Belief Networks. 

The Unified Modeling Language (UML) is the de facto software specification language used 

in the industry. We thus use UML for specifying the application and its security constraints. The 

models must be formally analyzed to provide assurance of correct behavior. Moreover, the analysis 

must be automated to the extent possible so as to reduce human errors. UML does not have much 

tool support for automated analysis. Towards this end, we propose a new tool and methodology 

by which UML specifications can be automatically converted into Alloy. We show how the re- 

sulting specification can be evaluated by the Alloy Analyzer. We also show how existing tools for 

analyzing UML designs, such as, OCLE and USE, can be enhanced to support our analysis. 



Security Management in Pervasive Computing Environments 

Pervasive computing applications typically involve cooperation among a number of entities 

spanning multiple organizations. Thus, a security breach can have very far reaching consequences. 

Moreover, the resource constraints in pervasive environments preclude the use of strong security 

mechanisms in such applications. Towards this end, we propose a model that can evaluate the 

chances of an attack occurring. In the event that an attack caused by a malicious worm occurs, 

it is important to identify the source of attack. The existing practices offending off such mali- 

cious worms are all based on filtering techniques that use signatures derived from the worm code. 

This may not be fast enough in a pervasive environment. We develop an automatic distributed 

monitoring system to trace rapidly spreading worms back to their origins. 

Pervasive computing applications typically involve information flow over a complex network 

of devices. The choice of security mechanisms in pervasive environments is influenced by a num- 

ber of factors, the most important among which are the heterogeneity of the computing devices, 

resource constraints of these devices, the cost of deploying security mechanisms on these devices, 

and the attack coverage provided by them. An optimal set of security measures is often difficult to 

define because of the conflict between the level of security achievable by a mechanism and these 

other factors. We investigate the problem of selecting a subset of security hardening measures so 

as to be within a fixed budget and yet minimize the residual damage to the system caused by not 

plugging all security holes. We refine this model to integrate the attackers perceptions about cost 

to attack. In a related work, we show how workflow profiles can be used to capture the contexts 

in which a communication channel can be used in a pervasive environment. We formulate a set 

of constrained multi-objective optimization problems that minimize the residual damage and the 

maintenance cost incurred to keep the workflow secure and running. 

Controlled Data Dissemination in Pervasive Computing Environments 

Pervasive computing environments involve disseminating data to various entities. We need to 

limit the disclosure of sensitive data. Specifically, we would like to prevent the linking of sensitive 

data to any specific individual. Thus, in the A'-anonymity privacy model, information pertaining to 

an individual is often suppressed or generalized such that he cannot be distinguished from k other 

individuals. Suppressing or generalizing data causes loss of information, which makes the data 

less useful. We demonstrate how multi-objective optimization can be used to perform a privacy- 

utility trade-off and give an insight as to whether better privacy is achievable with the same (or 

nearly same) data utility. Existing privacy models, such as, ^-anonymity and /-diversity, provide 

a measure of the worst-case privacy but do not capture the privacy-bias that arises because of the 

anonymization. Towards this end, we propose the use of property vectors to represent privacy and 

other measurable properties of an anonymization and show how different anonymizations can be 

compared. 

Data availability is also very important in pervasive computing environments. Data access in 



a pervasive environment can often be modeled by a push-pull based broadcast architecture. In 

many of these models, the timeliness of servicing the data request becomes critical. Data begin to 

degrade in utility the later it is provided from a deadline. Thus proper scheduling of the data request 

is critical to ensure timely availability. We investigate this problem of data broadcast scheduling in 

an environment where the time criticality is specified by a soft deadline that is directly related to 

the data utility. Our experiments reveal that the broadcast schedule generated using heuristics can 

be improved by hybridizing them with local search techniques. Our experiments further illustrate 

that an evolution strategy based search technique does even better. The work assumes that each 

request sent by a client is for one data item only, and that multiple requests sent by a client are 

handled independently from each other. This assumption is eliminated in our subsequent works 

where each client requires an ordered set of data items, and the client can start processing as soon 

as it receives the first data item but cannot complete until it gets all the requested data items. Here 

again, evolution strategies are used to trade-off between the running time of the real-time scheduler 

and the quality of schedules generated. 

The work done as part of this project has been published in various peer-reviewed journals and 

conferences. The work also resulted in 3 Ph.D. dissertations. The dissertations and papers result- 

ing from this work are listed below. *e> 
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Chapter 1 

Introduction 

In order to win our nation's wars in the new millennium the U.S. Air Force plans to transform 

itself into a net-centric, knowledge-based force. Pervasive computing is an emerging paradigm that 

has the potential to act as an enabler for this goal. Pervasive computing uses numerous, casually 

accessible, often invisible computing and sensor devices, that are frequently mobile or embedded in 

the environment and that are interconnected to each other with wireless or wired technology. Being 

embedded in the environment and strongly interconnected, allow pervasive computing devices to 

exploit knowledge about the operating environment in a net-centric manner. Thus they provide a 

rich new set of services and functionalities that are not possible through conventional means. 

Although pervasive computing technology looks promising, one critical challenge needs to be 

addressed before it can be widely deployed - security. The very knowledge that enables a perva- 

sive computing application to provide better services and functionalities may easily be misused, 

causing security breaches. The problem is serious because pervasive computing applications in- 

volve interactions between a large number of entities that can span different organizational bound- 

aries. Unlike traditional applications, these applications do not usually have well-defined security 

perimeter and are dynamic in nature. Moreover, these applications use knowledge of surrounding 

physical spaces. This requires security policies to use contextual information that, in turn, must 

be adequately protected from security breaches. Uncontrolled disclosure of information or uncon- 

strained interactions among entities can lead to very serious consequences. Traditional security 

policies and mechanisms rarely address these issues and are thus inadequate for securing pervasive 

computing applications. Our work focuses on understanding the security challenges involved in 

pervasive computing applications and proposing solutions to some of the problems. 

In subsequent paragraphs we summarize the various aspects related to security of pervasive 

computing environments that we investigated in this project. Details about these works can be 

found in our publications. We highlight some of the more important contributions in the remaining 

chapters of this report. 

Our first task focussed on access control models for pervasive computing applications.  Al- 
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though a lot of research appears in extending traditional access control models for novel applica- 

tions, we found the models not expressive enough to meet the requirements of pervasive computing 

applications. Our first contribution involves extending existing access control models to incorpo- 

rate the notion of location and time. Our models allow the application to specify various types of 

spatio-temporal constraints that may arise in pervasive computing applications. The various fea- 

tures of the models may interact resulting in conflicts and inconsistencies. Towards this end, we 

show how the models can be formally analyzed. We use the Alloy Analyzer, which has an embed- 

ded SAT solver, to understand the subtleties involved with feature interactions. We demonstrate 

the applicability of this model in a real-world - the Dengue Decision Support system that is being 

designed at Colorado State University to be deployed in Mexico. An application using our access 

control model must be analyzed to provide assurance that correct policies have been specified. 

Towards this end, we show how such analysis can be done using two techniques: one using UML 

and Alloy and the other using Coloured Petri Nets (CPNs). 

Pervasive computing applications are dynamic in nature - the entities, the resources, and the 

access patterns may change during the course of application. In the face of such dynamism, it 

is essential to ensure that access control breaches do not occur. Since the required analysis must 

be done in real-time, it is equally important to minimize the verification time. To address this 

important problem, we formalize the semantics of our spatio-temporal model using graph theory 

and provide incremental analysis techniques. We achieve very good complexity results. In addi- 

tion, one side effect of this work is the development of a new and efficient common predecessor 

detecting algorithm in a dynamic graph, the results of which can be used in various application 

domains. 

Pervasive computing environments often involve interactions with different types of entities, 

not all of which are equally trustworthy. The nature of interactions between entities depend on 

the trust relationship between them. Towards this end, we model and quantify trust relationships 

within pervasive applications. In the model that we propose, the trust relationship between a truster 

and trustee is associated with a context and depends on the experience, knowledge, and recommen- 

dation that a truster has with respect to the trustee in the given context. Experience quantifies the 

past interactions that the truster had with the trustee, knowledge assesses the verifiable properties 

of the trustee, and recommendation measures how much other entities trust the trustee with respect 

to the given context. The absence of one or more of these values in a given context precludes com- 

puting the trust value in that given context. To overcome this problem, we formalize the notion of 

contexts and capture the relationships between different contexts in the form of a context graph. 

This allows one to extrapolate trust values from related contexts when all the information needed 

to compute trust is not available. It also helps resolve the semantic mismatches that occur when 

various sources use different terminology to represent contexts. We demonstrate the use of this 

trust model for providing trust-based access control in pervasive computing systems and also for 
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finding a reliable path for propagating sensor data to processing nodes. 

Security management is an important task in pervasive computing environments as some de- 

vices, specially sensor nodes, have limited computation and communication capabilities. For secu- 

rity management of these applications it is necessary to impose and maintain some secured struc- 

ture within the sensor network if one is involved in the application. Clustering is a key technique 

that simplifies network management in such large-scale sensor networks. A secure backbone, built 

by a cooperating hierarchy of clusters in the form of a cluster tree, can further enhance upper 

layer functions, such as secure routing, secure session key distribution between applications, se- 

cure broadcasting, and secure query delivery. We investigate the design of such a secure backbone 

for sensor networks based on the cluster tree approach. We integrate the Hierarchical Hop-ahead 

Clustering algorithm with a secret key pre-distribution scheme to build such a secure backbone. 

The key pre-distribution scheme based on Random Block Merging in Combinatorial Design has 

very low computational cost and communication overhead. The protocol ensures that at least one 

common key exist between any pair of nodes. 

The rich connectivity among computing elements in pervasive environments and abundance 

of low capability devices may cause irreparable damage by an attack. In order to address this 

problem, we propose a model that evaluates the chances of a successful attack. This allows one to 

put appropriate security controls where and when needed. In spite of security controls, it is possible 

for fast spreading worms to wreck havoc. Typically, we protect against such malicious worms 

using filtering techniques based on signatures derived from the worm code. However, worms can 

be designed to spread so rapidly that by the time a signature is developed and distributed the 

damage is done, thus rendering any signature-based mediation futile. We formulate an automatic 

distributed monitoring system to trace rapidly spreading worms back to their origins. It works 

by correlating anomalous events across a network and establishing a causal relationship between 

them. We show that even with less than perfect deployment (about 20%) of this system, it can very 

rapidly and accurately narrow down the worm origin to a small set of possibilities. Appropriate 

action can then be taken to respond to such attacks. 

Pervasive computing applications typically involve information flow over a complex network 

of devices. Effective security mechanisms need to be deployed to protect these applications. The 

choice of security mechanisms in pervasive environments is influenced by a number of factors, the 

most important among which are the heterogeneity of the computing devices, resource constraints 

of these devices, the cost of deploying security mechanisms on these devices, and the attack cov- 

erage provided by them. An optimal set of security measures is often difficult to define because 

of the conflict between the level of security achievable by a mechanism and these other factors. 

As a first step, we investigate the problem of selecting a subset of security hardening measures so 

as to be within a fixed budget and yet minimize the residual damage to the system caused by not 

plugging all security holes. We formulate the problem as a multi-objective optimization problem 
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and develop a systematic approach to solve the problem using non-dominated sorting genetic algo- 

rithm on an attack tree model of the system. We believe that an attacker's perceived gains through 

a specific attack strategy can (and should) influence the security administrator's decision to employ 

a particular defense strategy. Thus we refine the security provisioning problem as a payoff prob- 

lem to maximize the return on investment under the scenario that an attacker is actively engaged 

in maximizing its return on attacks. Subsequently, we show how workflow profiles can be used to 

capture the contexts in which a communication channel can be used in a pervasive environment. 

We formulate a set of constrained multi-objective optimization problems that minimize the residual 

damage and the maintenance cost incurred to keep the workflow secure and running. 

Pervasive computing applications often involve sharing sensitive data across organizational 

boundaries. For instance, one may want to prevent disclosing the identity of an individual. One 

well-known model preventing identity disclosure is the ^-anonymity model. The idea is to make 

a tuple indistinguishable from k — 1 other tuples by generalizing and/or suppressing attributes. 

Unfortunately, such transformations result in a considerable loss of information. The information 

loss is proportional to the value oik. Studies have focussed on minimizing the information loss 

for some given value of &. However, owing to the presence of outliers, a specified k value may 

not be obtainable all the time. Further, an exhaustive analysis is required to determine a k value 

that fits the loss constraint acceptable to a data requester. We investigate the problem of finding 

an optimal value of k for a given data set. Specifically, we develop a methodology to analyze 

the trade-off of the generalization losses involved with variations in k. Such types of analysis can 

reveal, for example, that it is possible to provide a higher level of privacy for a higher fraction of 

the data set without compromising much on its information content. It can also identify ways of 

examining if the level of privacy required by a human subject is achievable within the acceptable 

limits of perturbing data quality. We use multi-objective evolutionary optimization for exploring 

the trade-offs involved with minimizing information loss and maximizing privacy. 

Privacy models, such as k-anonymity, offer an aggregate or scalar notion of the privacy property 

that holds collectively on the entire anonymized data set. However, they fail to give an accurate 

measure of privacy with respect to the individual tuples. For example, two anonymizations achiev- 

ing the same value of k in the ^-anonymity model will be considered equally good with respect 

to privacy protection. However, it is possible that in one anonymization a majority of individuals 

have a higher probability of privacy breach than the other. We, therefore, reject the notion that 

all anonymizations satisfying a particular privacy property, such as k-anonymity, are equally good. 

The scalar or aggregate value used in the privacy models is often biased towards a fraction of the 

data set, resulting in higher privacy for some individuals and minimal for others. To better compare 

anonymization algorithms, there is a need to formalize and measure this bias. Towards this end, 

we propose the use of property vector to represent privacy and other measurable properties of an 

anonymization. We show how anonymizations can be compared using quality index functions that 
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quantify the effectiveness of property vectors. We also propose some preference based techniques 

when comparisons must be made across multiple properties induced by anonymizations. 

Data availability is also very important in pervasive computing applications. Data access in 

a pervasive environment can be modeled by a push-pull based broadcast architecture, specifically 

characterized by the time critical nature of the data requests. We investigate the problem of data 

broadcast scheduling in an environment where the time criticality is specified by a soft deadline 

that is directly related to the data utility. Our experiments reveal that the broadcast schedule gen- 

erated using heuristics can be improved by hybridizing them with local search techniques. Our 

experiments further illustrate that an evolution strategy based search technique does even better. 

Pervasive computing applications are very complex. Security issues cannot be added as an 

afterthought in such applications. We demonstrate how to design such applications using an aspect- 

oriented methodology. In our approach, the application is decomposed into modules on the basis 

of functionality - we refer to this as the primary model. We model each security concern that is 

of interest as an aspect. The aspect is then methodically composed with our primary model. The 

result of the composition is a model that represents the application in which the security concern 

has been addressed. We show how to verify resulting model to ensure that the important properties 

of aspects are preserved in it. We also demonstrate how to do trade-offs among different security 

aspects all of which satisfy the same security property by using Bayesian Belief Networks. 

Since the Unified Modeling Language (UML) is the de facto specification language in the soft- 

ware industry, we use it to for modeling the aspects and primary model. However, UML does not 

have much tool support for automated analysis. Towards this end, we show how existing tools for 

UML analysis, such as OCLE and USE, can be extended to support behavioral analysis. We also 

demonstrate an alternative approach that involves converting the UML specification automatically 

to Alloy using UML2Alloy and verify the resulting specification using the Alloy Analyzer. 

The rest of the report highlights some of our more important contributions. It is organized as 

follows. Chapter 2 presents our spatio-temporal role-based access control model that can be used 

for pervasive computing applications. Chapter 3 demonstrates the use of this model for real-world 

applications and shows how to provide assurance that no access control breach occurs. Chapter 

4 refines the model and expresses the semantics using graph-theory. Chapter 5 proposes a trust 

model, based on subjective logic, that can be used for pervasive computing applications. Chap- 

ter 6 describes how risk estimation and security provisioning can be done in the face of resource 

constraints. Chapter 7 shows how location information, captured by pervasive computing applica- 

tions, can be disseminated in a careful and controlled manner. Chapter 8 provides a methodology 

for designing secure pervasive computing applications. Chapter 9 concludes this report and gives 

some future directions. 

17 



v II ii 131C 1   — 

Spatio-Temporal Role-Based Access 
Control Model 

Pervasive computing applications use the knowledge of the surrounding context to provide better 

applications and services. Context information can be also used to provide better security for such 

applications. For example, access to a system need to be enabled only when a user enters a room 

and it to be disabled when he leaves the room. Traditional access control models, such as, DAC, 

BLP, or RBAC, do not take into account such environmental factors while making access deci- 

sions. Towards this end, we propose a spatio-temporal access control model for use in pervasive 

computing applications. 

We choose to base our model on RBAC primarily because the latter is policy-neutral, simplifies 

access management, and widely used by commercial applications. We illustrate how each com- 

ponent of RBAC can be related with time and location, and explain how they impact each entity 

and relationship in RBAC. We also demonstrate how spatio-temporal information can be used for 

making access decisions. The various features supported by our model are specified using logical 

constraints. These features often interact in subtle ways resulting in inconsistencies and conflicts. 

Consequently, it is important to analyze and understand these interactions before such models can 

be widely deployed. 

Manual analysis is often not rigorous, frequently tedious and error-prone. Analyzers based on 

theorem proving are hard to use, require expertise, and need manual intervention. Model checkers 

are automated but are limited by the size of the system they can verify. Considering these, we 

advocate the use of Alloy [24] for checking access control models. Alloy is a modeling language 

capable of expressing complex structural constraints and behavior. It supports automated analysis. 

Moreover, it has been successfully used in the modeling and analysis of real-world systems [15, 

48]. We demonstrate how Alloy can be used for analyzing the interaction of the different features 

of our access control model. 

The rest of the chapter is organized as follows.   Section 2.1 describes the highlights of our 
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model.   Section 2.2 illustrates our analysis techniques using Alloy.   Section 2.3 concludes this 

chapter with directions for future work. 

2.1    Our Model 

We briefly describe how the different entities of core RBAC, namely, Users, Roles, Sessions, Per- 

missions, Objects and Operations, can be associated with location and time. This forms the basis 

of our new authorization model. 

Users and Objects 
Users in our model can be human users or other entities such as sensor devices. For the rest 

of this discussion we refer to a user as a human user although all the concepts presented here 

applies equally to other entities. We assume that each valid user, interested in doing some location- 

sensitive operation, carries a locating device which is able to track her or its location. The location 

of a user changes with time. The relation UserLocation(u,t) gives the location of the user at any 

given time instant /. Since a user can be associated with only one location at any given point of 

time, we have the following constraint: 

UserLocation(u,t) = // AUserLocation(u,t) = lj o (/, C lj) V (/, C /,) 

We define a similar function U serLocations{u,d) that gives the location of the user during the time 

interval d. We define a function ObjLocations{o,d) in the same manner which gives the location 

of an object at any given time. 

Roles 

We have three types of relations with roles. These are user-role assignment, user-role activation, 

and permission-role assignment. We begin by focusing on user-role assignment. In our model, a 

user must satisfy spatial and temporal constraints before roles can be assigned. We capture this 

with the concept of role allocation. A role is said to be allocatedwhen it satisfies the temporal and 

spatial constraints needed for role assignment. A role can be assigned once it has been allocated. 

RoleAllocLoc(r) gives the set of locations where the role can be allocated. RoleAllocDur(r) gives 

the time interval where the role can be allocated. Some role s can be allocated anywhere, in such 

cases RoleAllocLoc(s) = universe. Similarly, if role p can be assigned at any time, we specify 

RoleAllocDur(p) = always. 

Some roles can be activated only if the user is in some specific locations at a given time. We 

borrow the concept of role-enabling [4, 29] to describe this. A role is said to be enabled if it 

satisfies the temporal and location constraints needed to activate it. A role can be activated only 

if it has been enabled. RoleEnableLoc{r) gives the location where role r can be activated and 

RoleEnableDur(r) gives the time interval when the role can be activated. 
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The predicate UserRoleAssig?i(u,r,d.l) states that the user u is assigned to role r during the 

time interval d and location /. For this predicate to hold, the location of the user when the role was 

assigned must be in one of the locations where the role allocation can take place. Moreover, the 

time of role assignment must be in the interval when role allocation can take place. 

U serRoleAssign{u,r,d J) => (ÜrserLocation(u,d) = I)A 

(/ C RoleAllocLoc(r)) A{dC RoleAllocDur(r)) 

The predicate UserRoleActivate{u,r,d,l) is true if the user u activated role r for the interval d at 

location /. This predicate implies that the location of the user during the role activation must be 

a subset of the allowable locations for the activated role, all time instances when the role remains 

activated must belong to the duration when the role can be activated, and the role can be activated 

only if it is assigned. 

User Role A ct ivate{ u,r,d,l) => 

(/ C RoleEnableLoc(r)) A{d C RoleEnableDur(r)) MJserRoleAssign(u,r,d,l) 

The additional constraints imposed upon the model necessitates changing the preconditions of the 

functions AssignRole and ActivateRole. 

Permissions 

The goal of our model is to provide better security than their traditional counterparts. This 

happens because the time and location of a user and an object are taken into account before making 

the access decisions. Our model also allows us to model real-world requirements where access 

decision is contingent upon the time and location associated with the user and the object. 

Permissions are associated with roles, objects, and operations. We associate three additional 

entities with permission to deal with spatial and temporal constraints: user location, object location, 

and time. We define three functions to retrieve the values of these entities. PermRo\eLoc{p,r) 

specifies the allowable locations that a user playing the role r must be in for him to get permission 

p. PermObjLoc(p,o) specifies the allowable locations that the object o must be in so that the 

user has permission to operate on the object o. PermDur(p) specifies the allowable time when the 

permission can be invoked. 

We define another predicate which we term PermRoleAcquire(p,r,d,l). This predicate is true if 

role r has permission p for duration d at location /. Note that, for this predicate to be true, the time 

interval d must be contained in the duration where the permission can be invoked and the role can 

be enabled. Similarly, the location / must be contained in the places where the permission can be 

invoked and role can be enabled. 

PermRoleAcquire(p,r,d,/) => (/ C (PermRoleLoc{p,r)r\RoleEnableLoc(r))) 

A{dC (PermDur(p)HRoleEnableDur(p))) 
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The predicate PermUserAcquire{u,o,p,d, I) means that user u can acquire the permission p on 

object o for duration d at location /. This is possible only when the permission p is assigned some 

role r which can be activated during d and at location /, the user location and object location match 

those specified in the permission, the duration d matches that specified in the permission. 

PermRoleAcquire(p,r,d, I) A U serRoleActivate{u, r,d, I) 

A(ObjectLocation(o,d) C PermObjectLoc(p,o)) => Permit serAcquire(u.oyp,dJ) 

Impact of Time and Location on Role-Hierarchy 

Organization structure is reflected in RBAC in the form of a role hierarchy [45] which is a 

transitive, anti-symmetric relation among roles. Senior roles can inherit the permissions of junior 

roles, or a senior role can activate a junior role, or do both depending on the nature of the hierarchy. 

Joshi et al. [29] identify two basic types of hierarchy. The first is the permission inheritance 

hierarchy where a senior role x inherits the permission of a junior role v. The second is the role 

activation hierarchy where a user assigned to a senior role can activate a junior role. Each of these 

hierarchies may be constrained by location and temporal constraints. Consequently, we have a 

number of different hierarchical relationships in our model one of which is described below. 

[Unrestricted Permission Inheritance Hierarchy] A senior role inherits the junior roles permis- 

sions but not the spatial and temporal constraints associated with it. If .v and v are roles such that 

x > y, that is, senior role x has an unrestricted permission-inheritance relation over junior role y, 

then x inherits v's permissions but not the locations and time associated with it. 

(JC > y) A PermRoleAcquire(p,y, d. 1) => PermRoleAcquire{p.x. always, universe) 

We define the other hierarchies, namely, unrestricted activation hierarchy, location restricted 

permission inheritance hierarchy, location restricted activation hierarchy, time restricted permis- 

sion inheritance hierarchy, time restricted activation hierarchy, time location restricted permission 

inheritance hierarchy, and time location restricted activation hierarchy, in a similar manner. The 

hierarchies differ with respect to the spatio-temporal constraints imposed on the corresponding 

hierarchical relationship. 

Impact of Time and Location on Separation Of Duties 

Separation of duties (SoD) enables the prevention of the fraud that may be caused by the user 

[46] when she performs an action that require two or more steps. SoD can be either static or 

dynamic. Static Separation of Duty (SSoD) comes in two varieties. First one is with respect to 

user role assignment. The second one is with respect to permission role assignment. In this case, 

the SSoD constraint is specified as a relation between roles. The idea is that the same user cannot 

be assigned to the same role. Due to the presence of temporal and spatial constraints, we can 

have different flavors of separation of duties - some that are constrained by temporal and spatial 

constraints and others that are not. One example of such a constraint is as follows: 
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[Weak Form of SSoD - User Role Assignment] Let x andy be two roles such that x ^y. x,y £ 

SSODw{ROLES) if the following condition holds: 

UserRoleAssign(u,x,dJ) => -» UserRoleAssign(u,y,d,l) 

The above definition says that a user u assigned to role x during time d and location / cannot be 

assigned to role v at the same time and location if x axidy are related by SSODw. 

We have other forms of SSoD constraints that we do not elaborate here. These include strong 

temporal form of SSoD - user role assignment, strong spatial form of SSoD - user role assignment, 

strong form of SSoD - user role assignment, weak form of SSoD -permission role assignment, 

strong temporal form of SSoD - user role assignment, strong spatial form of SSoD - user role 

assignment, and strong form of SSoD -permission role assignment. These differ with respect to 

the influence of spatio-temporal constraints on the relationships. We have various flavors of DSoD 

constraints as well that are identified in our publications [42, 43, 50, 51, 52]. 

2.2    Model Analysis 

We use Alloy to analyze the interaction of the various features of the access control model. Alloy 

is supported by an automated constraint solver called Alloy Analyzer that searches instances of the 

model to check for satisfaction of system properties. The model is automatically translated into 

a Boolean expression, which is analyzed by SAT solvers embedded within the Alloy Analyzer. 

A user-specified scope on the model elements bounds the domain, making it possible to create 

finite Boolean formulae that can be evaluated by the SAT-solver. When a property does not hold, a 

counter example is produced that demonstrates how the property has been violated. 

An Alloy model consists of signature declarations, fields, facts and predicates. Each signature 

consists of a set of atoms which are the basic entities in Alloy. Atoms are indivisible (they cannot 

be divided into smaller parts), immutable (their properties do not change) and iminterpreted (they 

do not have any inherent properties). Each field belongs to a signature and represents a relation 

between two or more signatures. A relation denotes a set of tuples of atoms. Facts are statements 

that define constraints on the elements of the model. Predicates are parameterized constraints that 

can be invoked from within facts or other predicates. 

The basic entities in the access control model, such as, User, Time, Location, Role, Permission 

and Object are represented as signatures. For instance, the declarations shown below define a set 

named User and a set named Role that represent the set of all users and the set of all roles in the 

system respectively. Inside the Role signature body, we have four relations, namely. RoleAllocLoc, 

RoleAllocDur, RoleEnableLoc, and RoleEnableDur which relates Role to other signatures. 

sig User{} 

sig Role{ 
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RoleAllocLoc: Location, 

RoleAllocDur:  Time, 

RoleEnableLoc:  Location, 

RoleEnableDur:  Time} 

The different relationships between the components in our model are also expressed as signa- 

tures. For instance, RoleEnable has a field called member that maps to a cartesian product of Role, 

Time and Location. Similarly, RoleHierarchy has a field RHmember that represents a relationship 

between Role and Role. Different types of role hierarchy are modeled as the subsignatures of 

RoleHierarchy. 

sig RoleEnable ( member: Role -> Time -> Location} 

sig RoleHierarchy { RHmember:  Role -> Role} 

sig TJPIH,   TPIH,   LPIH,   TLPIH,   UAH,   TAH,   LAH,   TLAH extends 

RoleHierarchy{} 

The various invariants are represented as facts in Alloy. For instance, the fact URActivate 

states that for user u to activate role r during the time interval d and location /, this user has to be 

assigned to role r in location / during time d. Moreover, the location of the user must be a subset 

of the locations where the role is enabled, and the time must be in the time interval when role r can 

be enabled. This is specified in Alloy as shown below. Other invariants are modeled in a similar 

manner. 

fact URActivate{ 

all u: User, r: Role, d: Time, 1: Location, uras: UserRoleAssignment, 

urac: UserRoleActivate | 

((u->r->d->l) in urac.member) => (((u->r->d->l) in uras.member) && 

(1 in r.RoleEnableLoc) && (d in r.RoleEnableDur)) 

} 

We use Alloy's fact feature to represent the properties of the different hierarchies. The fact 

UPIHFact represents the Unrestricted Permission Inheritance Hierarchy's property. The fact states 

that senior role sr can acquire all permissions assigned to itself together with all permissions 

assigned to the junior role j r . 

//Unrestricted Permission Inheritance Hierarchy 

fact UPIHFact{ 

all sr, jr: Role, p: Permission, d: Time, 1: Location, upih: UPIH, 

rpa: RolePermissionAssignment, pra: PermRoleAcquire | 

((sr->jr in upih.member) && (jr->p->d->l in pra.member) && 
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(sr->p   lin   (rpa.member).Location.Time))   => 

(sr->p->sr.RoleEnableDur->sr.RoleEnableLoc)   in pra.member} 

The separation of duty constraints are modeled as predicates. Consider the weak form of SSoD 

User Role Assignment. This constraint says that a user u assigned to role r\ during time d and 

location / cannot be assigned to its conflicting role rl at the same time and location. The other 

forms are modeled in a separate manner. 

//Weak Form of SSoD-User Role Assignment 

pred W_SSoD_URA(u:  User,   disj  rl,   r2:  Role, 

ura:  UserRoleAssignment.member,  d:  Time,   1:  Location){ 

((u->rl->d->l)   in ura)   =>   ((u->r2->d->l)  not in ura) 

} 

r 
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Figure 2.1: Counterexample for assertion TestConflict 

Once our access control model has been specified in Alloy, we need to verify whether any 

conflicts occur between the features of the model. We rely on the capabilities of the Alloy analyzer 

for this purpose. We create an assertion that specifies the properties we want to check. Once the 

assertion has been created, we let Alloy analyzer validate the assertion by using check command. 

If our assertion is wrong in the specified scope. Alloy analyzer will show the counterexample. 

For instance, to check the interaction of the weak form of SSoD, User Role Assignment and the 

Unrestricted Permission Inheritance Hierarchy, we make the assertion shown below. The assertion 

does not hold as illustrated by the counterexample shown in Figure 2.1. 
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// WSSoD_URA violation in the present of UPIH Hierarchy 

check TestWSSoD URA — 
assert TestConflict{ 

no u: User, disj x, y: Role, upih: UPIH, 

d: Time, 1: Location, ura: UserRoleAssignment | 

((x->y in A(upih.member))  && 

(u->x->d->l in ura.member)) => 

W_SSoD_URA[u, x, y, u->(x+y)->d->l, d, 1] 

} 
check TestConflict 

The counterexample shows one possible scenario. In this case, it uses the following instances 

to show the violation. 

1. Role = {RoleO,RoleX,Role2) 

2. UPIHO = {RoleO -> RoleX,Role2 — RoleO,Role2 — Role\} 

3. Time = d, Location = / 

4. UserRoleAssignment = {User —> RoleO —+ Time —* Location. User —► RoleX —> Time —* 

Location,User —» Role2 —> Time -^ Location} 

Substituting x and y in WSSoDURA predicate with Role2 and RoleX respectively, we get the 

violation. 

Similar types of analysis reveals that the various forms of SSoD permission role inheritance 

conflict with the different forms of permission inheritance hierarchy. Conflicts were also detected 

with the various forms of SSoD user role assignment with different forms of permission inheritance 

hierarchy. Further, the various forms of DSoD constraints conflict with the different forms of role 

activation hierarchy. Another source of conflict occurs between role activation and permission 

when the corresponding location constraints or the temporal constraints do not overlap. 

2.3    Conclusion and Future Work 

Traditional access control models do not take into account environmental factors before making 

access decisions. Thus, these models are not quite suitable for pervasive computing applications. 

Towards this end, we propose a spatio-temporal role based access control model. We identify the 

entities and relations in traditional RBAC and investigate their relationships with location and time. 

These relationships necessitate changes in the invariants and the operations of RBAC. The behavior 

25 



of the new model is formalized using constraints.  We investigate the relationships between the 

different constraints and how they interact with each other. 

There still remains some work to be done. We need to investigate how to store location and 

temporal information in an optimal manner, so that they can be used by the access control en- 

forcement module. Pervasive computing applications are typically represented as workflows. This 

necessitates our developing a spatio-temporal access control model for workflows. Workflows have 

additional control-flow and data-flow dependency constraints. It would be interesting to see how 

these constraints are affected by the spatio-temporal authorization constraints. 
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Chapter 3 

Applying Spatio-Temporal Model to 
Real-World Applications 

The proposed spatio-temporal role-based access control is suitable for various types of application. 

However, when such a model with numerous features is used for protecting a given application, 

we must provide assurance that no access control breach occurs. We propose a methodology that 

describes how we can get assurances that an application is indeed adequately protected. We use 

a real-world application called the Dengue Decision Support (DDS) system to illustrate our ap- 

proach. The DDS application is being developed by the Colorado State University in collaboration 

with the government of Mexico to help state-level public health officials respond to local outbreaks 

of dengue. Health officials are provided with mobile phones that run this application. They move 

from location to location gathering statistics about mosquito population which is then uploaded to 

a central system for further analysis. 

In order to formally analyze the authorization policies for the application, it is important to 

specify the application and its access control requirements in a formal specification language. We 

chose the Unified Modeling Language (UML) [34] for several reasons. First, it is the de facto 

modeling language used in the software industry. Second, it is easy to use and understand. Third, 

it is used together with Object Constraint Language (OCL), which is based on first order predicate 

logic; this makes specifications in UML amenable to analysis. We show how the existing access 

control requirements for the DDS can be specified using UML and OCL. 

Although formal analysis can be done on UML specifications that are augmented with OCL 

constraints, there is not much tool support for automated analysis. Towards this end, we advocate 

the use of Alloy [24] for doing automated analysis. We collaborated with researchers at University 

of Birmingham, U.K., in the development of a tool called UML2AlIoy [1,2] that automatically 

transforms UML class diagrams and OCL statements into Alloy models, which can then be verified 

by the Alloy Analyzer. The analysis demonstrates how well the access control requirements protect 

the application. 
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The rest of the chapter is organized as follows. Section 3.1 provides a brief background on 

how UML models can be transformed into Alloy specifications. Section 3.2 describes the Dengue 

Decision Support System and its access control requirements. Section 3.3 illustrates the model 

analysis process in the context of DDS. Section 3.4 concludes the chapter and enumerates future 

research. 

■ 

3.1    UML to Alloy Transformation 

We propose an approach that will transform UML models with OCL constraints into an Alloy 

specification. Alloy [22. 23, 24, 57] is a fully declarative first-order logic language designed for 

modeling and analyzing complex systems. An Alloy model consists of a number of signature and 

relation declarations. A signature specifies entities used to model the system, and relation decla- 

rations specify the dependencies between such entities, allowing the designer to capture complex 

structures. Alloy is supported by a fully automated constraint solver, called Alloy Analyzer , that 

analyzes system properties by searching for model instances that violate assertions about them. 

Alloy Analyzer translates the model into a Boolean expression, and analyzes it using embedded 

SAT-solvers. The user specifies a scope to the tool, which is an integer number used to bound 

the domain of model elements. Bounding enables the tool to create finite Boolean formulas for 

evaluation by the SAT-solver. If Alloy Analyzer produces an instance that violates the assertion (a 

counterexample), we can infer that the specified property is not satisfied. 

There are clear similarities between Alloy and UML languages such as class diagrams and 

OCL. From a semantic point of view both Alloy and UML can be interpreted by sets of tuples 

[25, 44]. Alloy is based on first-order logic and is well suited for expressing constraints on object 

oriented models. Similarly, OCL has extensive constructs for expressing constraints as first order 

logic formulas. Considering such similarities, model transformation from UML class diagrams 

and OCL to Alloy seems straightforward. However, UML and Alloy have fundamental differ- 

ences, which are deeply rooted in their underlying design decisions. For example, Alloy makes 

no distinction between sets, scalars and relations, while the UML makes a clear distinction be- 

tween the three. Other examples include that UML supports a number of primitive types, whereas 

Alloy only supports integers. UML also supports aggregation and composition, but there is no 

counterpart in Alloy. All of this makes the transformation from UML to Alloy challenging. 

Figure 3.1 depicts an outline of our approach. Using the Extended Backus-Naur Form (EBNF) 

representation of the Alloy grammar [25], we first generate a Meta Object Facility (MOF) compli- 

ant [36] metamodel for Alloy. We then select a subset of the class diagrams [33] and OCL [37] 

metamodels. To conduct the model transformation, a set of transformation rules has been defined. 

The rules map elements of the metamodels of class diagram and OCL into the elements of the 

metamodel of Alloy. The rules have been implemented into a prototype tool called UML2Alloy. 
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Figure 3.1: Outline of the transformation method 

If a UML class diagram, which conforms to the subset of UML we support, is provided as input to 

UML2Alloy, it automatically generates an Alloy model. For lack of space, we do not show how 

the EBNF representation of Alloy's grammar is transformed into a MOF compliant metamodel but 

refer the interested reader to [1]. In addition, the UML and OCL metamodels are not presented 

here, but can be found in the respective specification documents [33, 37]. 

Table 3.1 presents a table which provides an informal mapping between the most important 

elements of the UML and OCL metamodels and Alloy. More specifically a UML Class is translated 

to an Alloy signature declaration (ExtendsSigDecf), which defines a Sigld with the same name. If 

the class is not a specialization, the Alloy signature is not related to any SigRef. Otherwise, it may 

be related to a SigRef, which references the signature it might extend. 

A Property is translated to a declaration expression (declExp), which is used to define a field in 

an Alloy model. An Operation is transformed to a Predicate and the Parameters of the operation 

are transformed to declarations (Dec!). An Enumeration [33] is transformed to a signature declara- 

tion SigDecI, which declares an abstract signature. An EnumerationLiteral is transformed to a sub 

signature. A more complete transformation rules from UML to Alloy and their implementation are 

explained in our paper [1]. 

3.2    Dengue Decision Support System 

We illustrate our approach using a real-world Dengue Decision Support (DDS) system. DDS helps 

state-level public health officials respond to local outbreaks of dengue. Response consists of vec- 

tor control and vector surveillance, namely, spraying (control) and investigating locations where 

mosquitoes may be breeding and living (surveillance), and if the level of confirmed dengue cases 

has increased above a prescribed threshold. Public health officials are organized in jurisdictions, 
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UML+OCL metamodel element Alloy metamodel element 

Class ExtendsSigDecl 
Property DeclExp 

Operation Predicate 
Parameter Decl 

Enumeration ExtendsSigDecl 
EnumerationLiteral ExtendsSigDecl 

Constraint Expression 

Table 3.1: Informal mapping between UML and Alloy metamodel elements 

based on population, and multiple jurisdictions are included in a single state. When the threshold 

is reached, officials at both levels respond. The jurisdiction officer activates vector control and 

surveillance teams that are local to the jurisdiction, with instructions regarding the specific control 

and surveillance protocols to follow and the locations where they are to be performed. The state 

officer releases materials for control to the team, and the local team then performs the controls 

and surveillance ordered. The jurisdiction and state vector control officials are often located in 

different buildings, although the vector control team is co-located with the jurisdiction officer. All 

control materials are located in warehouses elsewhere, and for coordination reasons are controlled 

by the state officer. Information about specific cases of dengue is retained in what is called an epi- 

demiological study. This data includes information about the patient, the location where the patient 

lives (the premise), the case, and control and surveillance actions performed at the premise. The 

patient and case data are considered private information, and are only available to epidemiologists 

at the jurisdiction and state levels. The vector control team receives premise information along 

with orders for control and surveillance. However, the team also needs to have names associated 

with the premises in order to validate the location. The team therefore needs access to some of the 

patient data for a fixed period of time, in order to perform control and surveillance duties. For lack 

of space, we omit giving the full specification. 

Security Policies 

Entities 

DDS system consists of the following roles: State Epidemiologist, Jurisdiction Epidemiologist, 

Clinic Epidemiologist, Clinician, State Vector Control, Jurisdiction Vector Control, and Local Ju- 

risdiction VC Team. Tasks user can perform are listed in Table 3.2. Each role can perform their 

own set of tasks in the designated location and time summarized in Table 3.3. 
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Task Task 
1 Read Premise 10 Read VControl 
2 Change Premise 11 Change VControl 
3 Read Case 12 Read Work Record 
4 Change Case 13 Change Work Record 
5 Read Patient 14 Read VC Materials 
6 Change Patient 15 Change VC Materials 
7 Read Patient Names 16 Signal VC Need for DV 
8 Read Schedule Work 17 Signal VC Need for DHF 
9 Change Schedule Work 

Table 3.2: DDS Tasks List 

Role Tasks Location Constraint Time Constraint 
State Epi 16 A-State Office a-Regular Hours 
Juris Epi 1,3 

17 
B-Juris Office 
B-Juris Office 

a-Regular Hours 
b-Any Time 

Clinic Epi 17 C-Clinic b—Any Time 
Clinician 1,2,3,4,5,6 C-Clinic a-Regular Hours 
State VC 11, 15 A-State Office a-Regular Hours 
Juris VC 1,8,9,10,12,14 B-Juris Office a-Regular Hours 
Local VC Team 7 

1,9,13 

B-Juris      Office,       E- 
Emergency Location 

B-Juris Office, D-Field 

c-24 Hours Window 
after signal to begin 
work 
a-Regular Hours 

Table 3.3: DDS Role Constraints 

Role Hierarchy 

Some roles in the DDS are related using unrestricted permission inheritance hierarchy. Using our 

model, these relationships can be defined as follow: State Epi > Juris Epi, Clinic Epi > Clinician, 

and State VC > Juris VC. 

Separation of Duty 

There are two separation of duty constraints in DDS system. Both are the strong spatial form of 

static separation of duty. These permissions should not be assigned to the same user at the same 

time at any location. Note however, unlike traditional separation of duty, these permissions can be 

assigned to the same user at different times. 

1. User should not have permission to change VC protocols at the same time as he has permis- 

sion to change VC materials. 

2. User should not have permission to signal DV at the same time as signal DHF. 
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These can be represented in STRBAC as follow: (11,15)6 SSOD_PRA, and (16,17) e SSOD_PRA, 

3.3    Model Analysis 

Security analysis begins with abstracting and transforming the security policies of DDS into a 

UML class diagram and accompanying OCL statements. The class diagram depicts the entities 

that take part in the model, and defines their attributes related in the access control operations, 

such as the time and location attribute. OCL statements specify the invariants of the model such 

as the tasks assigned to role and security constraints that all entities in the model must satisfy. 

The next step involves using UML2Alloy to automatically transform the class diagram and OCL 

statements into an Alloy model, which is subsequently analyzed using Alloy Analyzer. 

3.3.1 Stage 1: Model Abstraction 

We first simplify the original model by removing non-essential elements so that the translation to 

Alloy produces a model that only contains items necessary to reason about its security properties. 

For example, we remove the attributes which are not related with the security such as, gender, 

birthdate, ssid from the Person entity since these attributes are not related with the access control 

model. The resulting UML class diagram is shown in Figure 3.2. 

The permission to role assignments are expressed as OCL constraints.  The following OCL 

statements depict the constraints for the permission to role assignment for Juris Epi role. 

context JurisEpi 

inv jurisEpiCon  :   (self.tasks =   (Task  ::  ONE -> 

including   (Task   ::  THREE))   and 

self.location = Location  ::   B and 

self.timeCon = Time  ::  a)   or 

(self.tasks =   (Task  ::  SEVENTEEN -> including 

(Task  ::   SEVENTEEN))   and 

self.location = Location ::  B and 

self.timeCon = Time  :: b ) 

The effect of permission inheritance hierarchy and separation of duty can also be expressed in 

OCL. We omit those details here but refer the interested reader to our paper [53]. 

3.3.2 Stage 2: Model Transformation 

The UML2Alloy tool is used to create an Alloy model from the class diagram and associated OCL 

specification. When we apply UML2Alloy to the UML class diagram and its OCL specification, 
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Figure 3.2: UML model for DDS's access control policies 

the class diagram will be transformed to the following signatures in Alloy corresponding to each 
class shown in Figure 3.2. 

abstract sig Role{ 

location:one Location, 

timeConrone Time, 

tasks:some Task, 

uses:set Person} 

one sig StateEpi extends Role{} 

one sig JurisEpi extends Role{} 

some sig Person{roles:some Role} 

abstract sig Location)} 

one sig A extends Location)} 

one sig B extends Location}} 
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sig Time{} 

sig a in Time{} 

sig b in Time{} 

sig c in Time{} 

abstract sig Task{} 

one sig ONE extends Task{} 

one sig TWO extends Task{} 

one sig SEVENTEEN extends Task{} 

The OCL constraint for the permission role assignment will be transformed to fact and predi- 

cate in Alloy. For example, the OCL constraint for the permission role assignment of the Juris Epi 

role will be transformed to the following Alloy code. 

fact JurisEpi_jurisEpiCon_fact{ 

all self:  JurisEpi   |  JurisEpi_jurisEpiCon[self]} 

pred JurisEpi_jurisEpiCon[self: JurisEpi]{ 

((self.tasks = ONE+THREE)   &&   (self.location = B)   && 

(self.timeCon = a))   ||   ((self.tasks = SEVENTEEN)   && 

(self.location = B)   &&   (self.timeCon in Time))} 

The effect of role hierarchy represented in the OCL constraint will also be transformed to 

fact and predicate in Alloy. The OCL constraint for the separation of duty constraint will be 

transformed to predicate in Alloy. Our paper [53] lists all the detailed specifications. 

3.3.3    Stage 3: Model Analysis 

Alloy assertions must be formulated prior to analysis by Alloy Analyzer. Assertions are statements 

that capture properties we wish to verify. Alloy Analyzer automatically checks such assertions and, 

if they fail, produces a counterexample. We have checked several assertions regarding the security 

properties of the example system. For example, it is crucial to ensure that no user can change VC 

protocols (task 11) at the same time as he has permission to change VC materials (task 15). To 

verify this, we create the following assertion: 

assert NoConflictPermsSTVCAssigned{ 
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all r:  Person.roles,  d:  Time,   1:  Location! 

((ELEVEN in r.tasks)   &&   (d in r.timeCon)   && 

(1 in r.location))   => 

((FIFTEEN  !in r.tasks)   &&   (d in r.timeCon)   && 

(1 in r.location))} 

The assertion produced no counterexample, meaning that it is valid for the given scope, which 

in this case was 8. We also checked whether the SoD for role permission assignment is maintained. 

assert NoConflictPermsSTVC{ 

all r: StateVC, d: Time, 1: Location 

((ELEVEN in r.tasks) && (d in r.timeCon) && 

(1 in r.location)) => 

((FIFTEEN !in r.tasks) && (d in r.timeCon) && 

(1 in r.location))} 

We chose a value of 8 for the scope of this analysis as well. However, this time the analyzer 

produced counterexample, which means these conflict permissions can be assigned to the same 

role. The counterexample is shown in Figure 3.3. 

File   Instance   Theme   Window 

A m to          a 1 
Viz     Dot    XML                     Evaiuator Next 

(DDSV2) Check NoConflictPermsSTVC for 8 
sig seq/lnt 

•   set $NoConflictPermsSTVC_d 
Time 

?   set $NoConflictPermsSTVC_l 
A 

o   set $NoConflictPerms5TVC_r 
t   StateVC 

9   field location 
A 

9   field tasks 
EIGHT 
ELEVEN 
FIFTEEN 
FOURTEEN 
NINE 

TV^ELVE 
t   field timeCon 

Time 
- set a 

set b 
o- set c 

Figure 3.3: Counterexample for assertion NoConflictPermsSTVC 
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3.4    Conclusion and Future Work 

Our spatio-temporal access control model is well suited for securing real-world pervasive comput- 

ing applications. However, due to the complexity of the application and the access control model, 

we need assurance that the application is indeed adequately protected. We use UML together 

with OCL for specifying the application and its access control requirements. Since UML does not 

have much automated tool support, we convert the UML model into Alloy and verify the resulting 

model automatically. In this chapter, we showed how the specification and verification of a typical 

application security policies can be effected in our framework. 

The applicability of SAT-solvers (such as the one in Alloy) for the purpose of analysis is limited 

by the size of the model that can be verified. Consequently, we are investigating how to further 

abstract the model resulting in the construction of smaller SAT formulae that can be efficiently 

verified. This, together with new research for improving SAT-solver technology, will alleviate the 

limitation mentioned above. 
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Chapter 4 

Graph-Theoretic Representation of 
Spatio-Temporal Model 

In the previous chapters, we outlined the new spatio-temporal role-based access control model 

that we have developed as part of this project. The model is specified in terms of constraints that 

support the various features of the model. It is important that the model be properly analyzed which 

is a non-trivial problem. In this chapter, we refine our original spatio-temporal role-based access 

control model into three simpler models so that their semantics can be expressed expressed in terms 

of graph theory. The use of graph-theory offers several advantages. It allows one to visualize the 

relationships and interactions among the different components of the model. Using the directed 

graph representation, the interaction and relationship between components in the model becomes 

more clear and expressive. It also allows one to readily detect the presence of inconsistencies using 

graph theoretic algorithms. These simple spatio-temporal access control models are more easily 

used in real world applications. 

The simpler models also serve an important purpose. Pervasive computing applications, in 

general, are dynamic in nature. This means that while an application is executing, the entities 

requiring access or the resources needing protection may change. In the face of such dynamism, it 

is essential to ensure that access control breaches do not occur. Since the required analysis to verify 

the satisfaction of security properties must also be done in real-time, it is important to minimize 

the verification time. The graph-theoretic approach allows techniques for incremental analysis with 

good time complexity results. For example, to detect SoD violations in a dynamic graph, we need 

to find whether the nodes connected by SoD constraints have a common predecessor. Applying 

a naive algorithm based on Depth First Search, requires 0(kE) time for each change applied to 

the graph, where k is the number of SoD constraints and E is the number of edges. We have been 

able to improve upon this result significantly by proposing a new common predecessor detecting 

algorithm in a dynamic graph. 

The rest of the chapter is organized as follows. Section 4.1 presents our spatio-temporal role- 
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based access control model using graph theoretic notations. Section 4.2 focuses on the dynamic 

aspects of the model and how we can ensure absence of access control breaches in the face of such 

changes. Section 4.3 illustrates our ideas by using an example application. Section 4.4 concludes 

the chapter. 

4.1    STARBACD: The Refined Spatio-Temporal Model 

We begin by giving a graph-theoretic formulation for our spatio-temporal role-based access control 

model that supports role hierarchy. The set of vertices V = UURUPUO correspond to the RBAC 

entities: Users (U), Roles (R), Permissions (P), and Objects (0). Our model assumes the existence 

of the following relationships of RBAC that constitute the set of edges E = UAUPAUPOuRHa U 

RHU where 

• User-Role Assignment (UA) = U xR 

• Permission-Role Assignment (PA) = RxP 

• Permission-Object Assignment (PO) =PxO 

• Role Hierarchy (RH) = RxRx {a.u}, which can be categorized to: 

- the activation hierarchy (RHa) = {(r,/) : (ry,a) G RH}, and 

- the permission usage hierarchy (RHU) = {(r,^) : (r.r7,!/) € RH} 

We define the notion of activation path, usage path and access path in a manner inspired by 

Chen and Crampton [8]. An activation path (or act-path) between vj and vn is defined to be a 

sequence of vertices vi,...,v„ such that (vi,V2) € UA and (v,_i,v/) G RHa for / = 3....,«. A 

usage path (or u-path) between vi and vn is defined to be a sequence of vertices v\,..., v„ such that 

(v/, v/+1) € RHU for /' = 1,..., n - 2, and (v„_ i, v„) £ PA. An access path (or acs-path) between v\ 

and v„ is defined to be a sequence of vertices vi,..., v„, such that (vi, v/) is an act-path, (v,, v„_ i) 

is an u-path, and (v„_ i. v„) e PO. 

We assume the existence of a spatio-temporal domain 2). We develop three refined models, 

namely, the standard model (STARBACD=), the strong model (STARBACD4"), and the weak 

model (STARBACD"). The models differ with respect to the spatio-temporal constraints that 

must be satisfied by the entities for the authorization to be successful. The strong model imposes 

the most number of constraints and is suitable for military applications. The weak model imposes 

the least number of constraints. It is intended primarily for emergency situations where we need 

to make rapid decisions yet ensuring that minimum security requirements are not violated. The 

details of all three models appear in our paper [54]. We present the highlights of the strong model 

only in this chapter. 

The strong model is used when the individual entities (users, roles, permissions, objects) and 

the different relationships must satisfy the spatio-temporal constraints. Each entity is associated 



with spatio-temporal points that indicate where the entity can be activated. For example, the spatio- 

temporal points associated with a role specify when and where the role can be activated. Similarly, 

the spatio-temporal points associated with a relation indicate when the relationship can be acti- 

vated. To illustrate, consider the relation (r.p) £ PA. In this case, we not only have to take into 

account the spatio-temporal points at which the role r can be activated in a session and the points 

at which the permission p can be invoked, but also we must consider the spatio-temporal points 

when r can invoke p. 

The spatio-temporal constraints in the strong STARBACD model (or STARBACD+) are de- 

scribed using two functions X and /J which are defined below. X : V —* 2®. For vGK, A.(V) C <D 

denotes the set of points in space-time at which v can be invoked. 

• if u £ U, then X(u) denotes the set of points in space-time at which u may create a session; 

• if r £ Rr then X(r) denotes the set of points in space-time at which r may be activated in a 

session; 

• if p £ P, then X(p) denotes the set of points in space-time at which p may be granted; 

• if o £ 0, then X(o) denotes the set of points in space-time at which o may be accessible. 

/j : E —► 2®. For e = (v,^) £ E, fi{v,V) denotes the set of points in space-time at which the 

association between v and v/ is enabled. 

• if (w,r) £ UA, then //(w,r) denotes the set of points in space-time at which u is assigned to r; 

• if (rV) € RHa, then //(^' ,r) denotes the set of points in space-time at which r' is senior to r 

in the activation hierarchy; 

• if (/,r) e RHU, then ^(rf,r) denotes the set of points in space-time at which r' is senior to r 

in the permission usage hierarchy; 

• if (r,p) G PA, then //(r,p) denotes the set of points in space-time at which p is assigned to r. 

• if (p,o) £ PO, then n{p,o) denotes the set of points in space-time at which o is assigned to 

Given a path vi,...,v„ in the labeled graph G= (K,£.A.,//), where V = UuRUPuO and 

E = UAUPA UPOURHaURHu , we write £(v,,..., v„) = //(v,, v„) C V to denote fljj //(v„ v,+ ,). 

The semantics imply that an edge can only be enabled if both endpoints are enabled. Hence, 

£(v'i, v„) is the set of points at which every vertex and every edge in the path is enabled. 

Authorization in STARBACD+:   • a user v£U may activate role v7 £ R at point d£(D if and 

only if there exists an act-path v = vj, vj,..., vn = v7 and d £ Ju(v, \/); 

• a role v £ R is authorized for permission v7 e P at point d £<D if and only if there exists 

an u-path v = v\, v2,..., v„ = v/ and <tf G £(v, v7); 

• a user v G (/ is authorized for permission v7 £ P with respect to object v" 6 Ö at point 

J G 'D if and only if there exists an acs-path v = v\, V2,..., v,,..., v„_i = v7, v„ = v7' such 
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that v, € R for some /', vi,..., v, is an act-path, v,-,..., v„_ j is an u-path, (v„_ \, v„) <E PO 

and d £ //(vV); 

Our model also supports separation of duty (SoD) constraints. SoD prevents the occurrence of 

fraud arising out of conflicts of interests in organizations [46]. Separation of Duty (SoD) comes in 

two varieties. First one ensures that no user can be assigned to two conflicting roles. Second one 

guarantees that no role can be assigned two conflicting permissions. We denote these two types of 

SoD by using SEfi and SLf edges, respectively. Since SoD is a symmetric relationship, the SEfi 

and SLf edges are bi-directional. 

The strong model supporting SoD constraints is denned over the labeled graph G = (V,E:X,JLI), 

where £ = UAUPAUPOURHaURHUUSD*USI? and V = UURUPUO. The strong model 

allows specification of weaker forms of SoD constraints than those supported by the traditional 

RBAC. Specifically, it allows one to specify the spatio-temporal points at which the SoD con- 

straints are valid. 

SoD Constraints for STARBACD+ 

User-Role Assignment: if far*) € SL? then there are no two edges (u,r) and (w,r;), correspond- 

ing to some user u, where //(w, r) Pi fi(u, r1) n fi{r, r1) ^ 0 

Permission-Role Assignment: if (p. p') € SEf then there are no two u-paths r = v\, V2,..., v„ = 

p and r = I/, , v^,..., v^ = p' where //(v1? v„) n^,t/J n^{p.p') ^ 0 

Pervasive computing applications require that our model support delegation. This is because 

many situations require the temporary transfer or granting of access rights belonging to a user/role 

to another user/role in order to accomplish a given task. For example, a doctor may delegate some 

of his privilege to the nurse while he is temporarily unavailable. The entity that transfers or grants 

its privileges temporarily to another entity is referred to as the delegator and the entity who receives 

the privilege is known as the delegatee. The delegator (delegatee) can be either an user or a role. 

Thus, we may have four types of delegations: user to user (U2U), user to role (U2R), role to role 

(R2R), and role to user (R2U). When a user is the delegator, he can delegate a subset of permissions 

that he possesses by virtue of being assigned to different roles. When a role is the delegator, he can 

delegate either a set of permissions or he can delegate the entire role. We can therefore classify 

delegation on the basis of role delegation or permission delegation. In the graphical representation 

of STARBACD, we define a function v : (UUR) x (RuP) -> {UUR) that maps the delegation to 

the delegator. The user to user role delegation is formalized as follows: (Delegate^2u) = U x &> 

v(w, r1) = u' denotes the delegator who is a user authorized for role r1. The other types of delegation 

can be formalized similarly. 

Delegation in the Strong Model STARBACD 

The strong model supporting delegation is defined over the labeled graph G = (r,£,X,^i), 

where E = UA U PA U PO U RHa U RHU U DG and DG is the set of all delegation edges and V = 
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UURUPUO. We specify a sample delegation constraint as follows: If(u.r') 6 Delegatey2U and 

v(w,r/) = u', then there exists an act-path vl = v\, v^,..., vn = r* such that jn{v\, v„)C\/j(uy) / 0 

This says that when a user 1/ delegates role / to user w, then the delegation is possible only if the 

spatio-temporal points for activating user w"s role r' overlap with those in which the delegation is 

valid. For lack of space, we do not discuss all the other forms of delegation constraints, but refer 

the reader to our paper [54]. 

4.2    Dynamic Model 

Pervasive computing applications are dynamic in nature-the accessing entities may change, re- 

sources requiring protection may be created or modified, and an entity's access to resources may 

change during the course of the application. Such changes may result in unreachable or isolated 

entities (such as, a normally authorized user being denied access because the user-role-permission 

assignment has been removed), or the violation of separation of duty constraints. We need to 

analyze the model to detect such problems. The following changes are possible in our model. 

1. Entity and Relationship Removal The following entities can be removed: user, role, per- 

mission, or object. Note that, this removal must be accompanied by deleting the relationships 

associated with these entities. 

2. Relationship Removal The following relationships can be removed: User-Role Assignment, 

Permission Usage Hierarchy, Role Activation Hierarchy, Role-Permission Assignment, or 

Permission-Object Assignment. This type of change can also cause an entity to become 

isolated. 

3. Relationship Creation A new relationship can be created between existing entities. The 

relationship may be User-Role Assignment, Permission Usage Hierarchy, Role Activation 

Hierarchy, Role-Permission Assignment, Permission-Object Assignment, SoD, or Delega- 

tion. Creation of a new relationship may result in separation of duty violation. 

4. Entity and Relationship Creation A new entity together with its corresponding new rela- 

tionship can be created. The entity may be user, role, permission, or object. The relationship 

may be User-Role Assignment, Permission Usage Hierarchy, Role Activation Hierarchy, 

Role-Permission Assignment, Permission-Object Assignment, SoD, or Delegation depend- 

ing on the type of entity being created. This type of change can cause the SoD constraints 

violation. 

5. Updating Spatio-Temporal Constraints The spatio-temporal constraints assigned to enti- 

ties or relations can be changed. The entity may be user, role, permission, or object. The 

relationship may be User-Role Assignment, Permission Usage Hierarchy, Role Activation 

Hierarchy, Role-Permission Assignment, Permission-Object Assignment, SoD, or Delega- 

tion. This type of change can cause either the infeasible path violation or SoD constraints 
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violation. 

4.2.1 Algorithm for Detecting Isolated Entities 

Preliminaries 

We define an isolated entity as one which is unreachable and therefore cannot be used. The isolated 

entity can be determined by considering the in-degree and out-degree of each vertex. The in-degree 

and out-degree of the vertex defined with respect to STARB ACD+ model are given below. 

In-degree In the labeled graph G = (V,E,\,M), where V = UURUPUOandE = UAUPAUPOU 

RHaURHu, in-degree of a vertex v is the cardinality of the set {(v/, v)|((i/, v) € E) A (Ä.(v') n 

X(v)nMv/.v)^0)} 

Out-degree In the labeled graph G = (V.EXf), where V = UURUPUO and E = UAUPAU 

POl)RHaURHu, out-degree of a vertex v is the cardinality of the set {(v, v/)|((v,v/) € £) A 

Note that, we do not consider the separation of duty or the delegation edges since the modifications 

to these edges do not change the isolated entities. 

The Detection Algorithm 

The different types of isolated entities are detected as follows: 

User For v € U, v is the isolated entity iff out-degree(v) = 0 

Role and Permission For v e RUP, v is the isolated entity iff (in-degree(y) = 0) V (out-degree (v) = 

Object For v € O, v is the isolated entity iff in-degree(v) = 0 

To get the in-degree and out-degree, we have to count the number of edges connected to each 

vertex. This can be done in 0(VE) time. However, we can improve this by recording the in-degree 

and out-degree of each vertex. Each time the vertex or the edge is added to or removed from the 

graph, we update the in-degree and out-degree of the related vertices. Since we do not allow the 

existence of multiple edges between each pair of vertices, this update process can be done in 0(V). 

After we have such values recorded for every vertex, the detection can be done in 0(V). 

4.2.2 Algorithm for Detecting Infeasible Paths 

Preliminaries 

In STARBACD model, a user u is authorized for permission p through role r with respect to object 

o iff there exists a valid acs-path which contains w, r, p, and o. We define an infeasible path as an 

invalid acs-path i.e. an acs-path which cannot grant the authorization of any permission to user. 
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The Detection Algorithm 

To detect the infeasible path, we assume that we store all source vertices in a list. Each member 

in the list maintain its own depth-first search (DFS) tree. To generate these trees, we perform DFS 

from each source. While performing the DFS, we check if there is any spatio-temporal conflicts 

between the nodes or edges. If there is any conflict, then there exists an infeasible path. This 

step could be done in O(VE). After the process we will have set of the initial DFS trees which 

consists of feasible paths. Next for each update operation of the graph, we ensure that the following 

conditions are satisfied: 

• Only user vertices can be the root of each subtree. 

• Only object vertices can be the leaf node of each subtree. 

For each update operation of the graph, we proceed as discussed here. If any new entity v and its 

corresponding relationship have been added to the initial graph, we consider the following: 

• If v is a new source, we perform DFS from v to create all of its acs-paths. While perform- 

ing the DFS, we check whether the spatio-temporal constraints between the source and its 

successors are satisfied. If so, we add v to the source list and maintain its pointers to its 

immediate successors. If not, then this v will create an infeasible path. This step can be done 

in 0(E) time. 

• If v is a new intermediate vertex, we perform DFS from each source. While performing the 

DFS, we check whether all spatio-temporal constraints are satisfied. If so, we create pointer 

from v's immediate predecessors to v, and from v to its immediate successors. If not, then 

this v will create an infeasible path. This step can be done in 0(VE) time. 

• If v is a new sink, we perform reverse DFS from v. While performing the reverse DFS, we 

check whether the spatio-temporal constraints between v and its predecessors are satisfied. 

If so, we create pointer from its immediate predecessors to v. If not, then this v will create 

an infeasible path. This step can be done in O(E) time. 

If any existing spatio-temporal constraint has been updated in the initial graph, we consider the 

following: 

• If the update is done on A.(v), where v is a source, we perform DFS from v to each of its acs- 

path. While performing the DFS, we check whether the spatio-temporal constraints between 

the source and its successors are satisfied. If so. we update X(v) to the new one. If not, then 

this update will create an infeasible path.This step can be done in 0(E) time. 

• If the update is done on /i(v, v7), where v is a source, we perform DFS from v to each of 

its acs- path which contains v1'. While performing the DFS, we check whether the spatio- 

temporal constraints between the source and its successors are satisfied. If so, we update 
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^(v,^) to the new one. If not, then this update will create an infeasible path.This step can be 

done in 0(E) time. 

• If the update is done on X(v) or //(v,v/), where v is an intermediate vertex, we perform 

DFS from each source. While performing the DFS, we check whether all spatio-temporal 

constraints are satisfied. If so, we update X(v) or //(v,\/) to the new one. If not, then this 

update will create an infeasible path. This step can be done in O(VE) time. 

• If the update is done on A.(v), where v is a sink, we perform reverse DFS from v. While 

performing the reverse DFS, we check whether the spatio-temporal constraints between v 

and its predecessors are satisfied. If so, we update A.(v) to the new one. If not, then this v 

will create an infeasible path. This step can be done in 0(E) time. 

• If the update is done on p(v, v'), where v7 is a sink, we perform DFS from v/ to each of its acs- 

path which contains v. While performing the DFS, we check whether the spatio-temporal 

constraints between the source and its successors are satisfied. If so, we update p(v,V) to 

the new one. If not, then this update will create an infeasible path. This step can be done in 

0(E) time. 

4.2.3    Algorithm for Detecting SoD Violations 

Preliminaries 

In STARBACD model, SoD can be violated in one of two ways. First, if (r\,ri) G SL^, and there 

exists acs-paths from u\ to r\ and u\ to r-i. Or, if {p\,pi) G SLf, and there exists u-paths from r\ 

to p\ and r\ to pi- 

The Detection Algorithm 

Consider the dynamic case where edges can be added and deleted from the graph. The naive 

algorithm can be done by performing the reverse DFS on each (v, V) G SE^USD*3 of the modified 

graph to find the common predecessor. This could be done in 0(k\E\) time. We can apply the 

same algorithm for the case where the spatio-temporal constraint is updated in the graph too. 

Our algorithm which will be proposed next is a special case of the algorithm to find the com- 

mon predecessors in a Directed Acyclic Graph (DAG). In our algorithm, each entity except a user 

will maintain a list of users authorized for it by performing the DFS from each user. Only users 

satisfying the spatio-temporal constraints will be added to the list. To determine whether the SoD 

(v,i/) G SLfuSrfi is violated, we compare whether u G U is in the authorized users list of both v 

and v7, and X(u) n/i(v,\/) ^ 0. If this evaluates to true, then there exists an SoD violation. Since 

the size of each list cannot exceed the number of user vertices, the evaluation time is 0(\U\). Let 

k be number of SoD edges. The detection time for the static case where no adding or removing 

of edges is allowed, is equal to 0{k\U\). To label all vertices it takes 0(|£||£/|) time, and yields 



the total running time in the static graph equal to 0((k+ \E\)\U\). However, in the case where all 

edge modifications are of same type, i.e., only either adding edges or deleting edges are allowed, 

we can improve the running time by applying the following algorithm: 

• When only adding edges is allowed, each time a new edge is added, we update only the 

label list of vertices belonging to the graph portion that have not been reached before by 

using the incremental-DFS described in our paper [54], All updates take 0(|£||£/|) time, 

and detecting whether the SoD is violated take 0(\U\) per SoD edge. This yields the total 

processing time equal to 0((k+ \E\)\U\). 

• When only removing edges is allowed, we update only the label list of vertices that becomes 

unreachable by some user u after the edge removal. Using our proposed algorithm [54], the 

removal of an edge takes 0(|£|/og|K|) time for relabeling for each user vertex, and detecting 

whether the SoD is violated take 0(\U\) per SoD edge. This yields the total processing time 

equal to 0((*+|£|/og|K|)|*/|). 

For the detail on graph specification updating algorithm and proof of correctness, we refer to our 

paper [54]. 

4.3    Military Example 

We describe a military application where the STARBACD^ can be applied. Let us assume that 

in the battlefield, each troop consists of military staff with the following responsibilities: The 

Intelligent Officer is responsible for the process of acquiring enemy information, interpreting it 

and then sending it to the Soldier in his troop. The Clinical Officer is in charge of monitoring the 

health information of his troop, evaluating the information to check whether the trooper's life is in 

danger, and sending the SOS signal to the commander to get the proper help. The list of entities 

and the spatio-temporal relationships are shown in Tables 4.1 and 4.2 respectively. 

The graph-theoretic representation is shown in Figure 4.1(a). We will only describe parts of 

this configuration. User Alex (u\) can create session at any time and at any place as per Row 1 

of Table 4.1. He is assigned the role of Intelligence Officer (r\) which can be activated at any 

place at any time. During this time and at this location, he has permission (p\) to access the 

Surveillance Sensor Information (o\). Since Intelligence Officer is senior to Soldier role in the 

permission usage hierarchy, he can also get the permission to maneuver the Tank. However, this 

permission is allowed only when the hierarchy is enabled on the battlefield. During the war, Alex 

gets injured and cannot pursue his mission. So, his role must be delegated to Charlie until he fully 

recovers. This new graphical representation is shown in Figure 4.1(b) where the delegation edge 

is represented by the dashed arrow. However, this delegation should not be allowed because our 

algorithm detects a violation of separation of duty constraint in the presence of this delegation. 
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NAME DESCRIPTION SPATIO-TEMPORAL DOMAIN (A.) 1 
u\ Aiex [Universe, Always] 

u2 Ben [Universe, Always] 

"3 Charlie [Universe, Always] 

n Intelligence Officer [Universe, Always] 

n Soldier [Field, Always] 

rz Clinical Officer [Universe, Always] 

P\ Access Surveillance Sensor [Universe, Always] 

Pi Maneuver the Vehicle [Field, Always] 

Pi Access Vital Sensor [Universe, Always] 

0] Surveillance Sensor Information [Universe, Always] 

°2 Tank [Field, Always] 

°3 Health Information [Universe, Always] 

Table 4.1: STARBACD entities for the military example 

NAME DESCRIPTION SPATIO-TEMPORAL DOMAIN (/i) 1 
(«i»n) User-Role Assignment [Universe, Always] 

("2,r2) User-Role Assignment [Field, Always] 

(W3,n) User-Role Assignment [Universe, Always] 

(run) Permission Usage Hierarchy [Field, Always] 

(r\,Pi) Permission-Role Assignment [Universe, Always] 

(riiPl) Permission-Role Assignment [Field, Always] 

[r^p-i) Permission-Role Assignment [Universe, Always] 

(Pi.Pl) Separation of Duties [Universe, Always] 

(PliPi) Separation of Duties [Universe, Always] 

(P\,0]) Permission-Object Assignment [Universe, Always] 

(P2,02) Permission-Object Assignment [Field, Always] 

(P3,03) Permission-Object Assignment [Universe, Always] 

Table 4.2: STARBACD relationships and constraints for the military example 

4.4    Conclusion and Future Work 

We present a graph-theoretic representation of our spatio-temporal role-based access control model 

that allows one to visualize and reason about spatio-temporal access control. The dynamism in- 

herent in pervasive computing applications may cause the access control configuration to change 

while the application is executing. Towards this end, we show how to perform incremental analy- 

sis to give assurance that security breaches do not occur as a result of changing the access control 

configuration. Our analysis makes clever use of data structures and achieves good time complexity 

results. 

Pervasive computing applications will typically be modeled as workflows. In future, we plan to 

extend our graph-theoretic formalism to represent the access control configuration of workflows. 
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(a) Configuration before delegation        (b) Configuration after delegation 

Figure 4.1: Access control configurations for the military example 

We also plan to investigate the interaction of workflow and authorization constraints where the 
access control model is updated during workflow execution. 
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Chapter 5 

A Trust Model for Pervasive Computing 
Applications 

Traditional security policies and mechanisms assume a binary notion of trust - either an entity 

is trusted completely or not at all. However, such a simplistic notion of trust is not suitable for 

pervasive computing applications where there are interactions among different entities, not all of 

which are equally trustworthy. The reason is that these binary models of trust fail to correctly 

assess trust levels of groups in which some of the entities are trusted while others are not. The 

nature of interactions, often times, depends on the trust relationships between the entities. Thus, 

it is important to formalize and capture the trust relationships which will allow us to compare 

them and compose them to make decisions. Moreover, since pervasive computing applications are 

dynamic and involves interacting with unknown entities, the trust model should be able to represent 

and argue about uncertainty. The trust model should also be interoperable as pervasive computing 

applications often span multiple organizations. 

In this chapter, we present the highlights of a new trust model that we propose for pervasive 

computing applications. We begin by defining trust as a relationship between a truster and a trustee 

with respect to a given context. We identify the factors on which trust depends and show how to 

assess these factors and compute the value of trust relationship. Subsequently, we formalize the 

notion of context that allows us to compare trustworthiness across different domains and also 

enables one to extrapolate trust in the absence of information in a given context. 

The rest of the chapter is organized as follows. Section 5.1 presents an overview of our trust 

model. Section 5.2 formalizes the relationship among different contexts which is needed to make 

the trust model interoperable and to reason about trust in the absence of information in a given 

context. Section 5.3 concludes the chapter with some references to future work. 



5.1    Overview of Trust Model 

Trust is a relationship between two entities, a truster A and a trustee B, with respect to some context 

c. The trust relationship between a truster and a trustee is never absolute. A truster trusts a trustee 

with respect to specific capabilities, such as providing a service or keeping a secret. This represents 

our notion of trust context. 

We start by representing the trust relationship (A —► B)t as a 3 x 3 matrix. The rows of the 

matrix correspond to the three parameters, namely, experience, knowledge, and recommendation, 

on which trust depends. (The formal definitions of these parameters and methods for evaluating 

them are given later.) We use Josang's opinion model[26] to represent each of these parameters. 

Each parameter is a (b,d,u) triple, where b means belief, d specifies disbelief, and u signifies 

uncertainty about the parameter to evaluate the trust. These three terms constitute the columns of 

the trust matrix. 

The three parameters may not have equal importance for evaluating trust. The trust policy vec- 

tor specifies the normalization factor that gives the relative weight of each parameter. Applying the 

normalization factor to the trust relationship gives a normalized trust relationship. The normalized 

trust relationship between truster A and trustee B pertaining to context c at time / is formally de- 

noted as (A —♦ B)f. It specifies ^'s normalized trust on B at a given time / for a particular context 
A A. A 

c. This normalized trust is represented as a single triple (A^B, Ad
c

B, A^B)- 

Trust is evaluated on the basis of three factors, namely, experience, knowledge, and recommen- 

dations. In the following subsections, we briefly describe how each of these factors are computed. 

5.1.1    Evaluating Experience 

Definition 1 The experience of a truster about a trustee is defined as the measure of the cumulative 

effect of a number of events that were encountered by the truster with respect to the trustee in a 

particular context and over a specified period of time. 

We model experience in terms of the number of events encountered by a truster, A, regarding a 

trustee, B in the context c within a specified period of time [to,tn]. We assume that A has a record of 

the events since time to. An event can be positive or negative or neutral. Positive events contribute 

towards increasing the belief component of experience. Negative events increase the disbelief 

component of experience. Neutral events increase both belief and disbelief components equally. 

No experience contributes towards the uncertainty component of experience. In the following, we 

describe how to calculate the experience that a truster A has about trustee B with respect to context 

c. This is formally denoted as AE
C

B — (be, dE, uE) where bE, dE, uE represent belief, disbelief and 

uncertainty components respectively with respect to the experience that A has towards B. 

We use the temporal notation [/,,/y] for describing a time interval where /, ^ tj.   The time 
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interval [/,,r7] describes the set of consecutive time instances where tt is the first instance and tj 

is the last one. We denote the time period of interest as [to,t„]. This is divided into a set of/? 

sub-intervals [/o,fi], [t\ ,'2], ■ ■ -, [tn-\,t„]. The intervals overlap at the boundary points only. That is, 

ViJ,k,l e N, where /, j\ k, I are all distinct, [thtj] n [/*,//] = 0. Also, ViJ,k G N, where /, j\ k are 

all distinct, [/,-,/y] D [tj,tk] = {tj}- That is, all instances, except to and /„, that occur at the boundary 

of an interval is a part of two intervals. We refer to the interval [/*_!,/*] as the tfh interval where 

0<k<n- I. 

We assume that events occur at time instances. The function £T, referred to as the event- 

occurrence-time function, returns the time instance /, at which a given event e^ occurred. Formally, 

ET(ek) = tj. Moreover, if ET(ek) = tj and tj G [/,,/*] and j ^ iAj ^ &, then e* is said to occur in 

the interval [/,-,/*]. For two consecutive intervals [r,-,/y] and [/y,f*] if ET(ei) = tj then we assume e* 

occurs in the interval [tjJ/]. 

Let the experience acquired at interval 1, 1 < / < n - 1, be represented as (£,-,dx,u{) where 6„ 

dt, Uj denotes belief, disbelief, and uncertainty respectively. When no event occurs during some 

particular time interval i, this corresponds to the fact that w, = 1 and bj = d, = 0. The next case is 

when events occur at the interval i. Let Pj denote the set of all positive events, 0} denote the set 

of all negative events, and TV, denote the set of all neutral events that occur in the interval i. Each 

positive event increases 6/, each negative event increases */,-, and each neutral event increase both bi 

and dj. The values for 6Z, dj and w, are computed as follows. bt = rpT^rpT^jm, d{ = |/?rT ■ JiijT^i, and 

Ui = 0. The intuition is that each positive event contributes to the belief component by ij>.|+ip.i+w.|- 

Similarly, each negative event contributes to the disbelief component by I/>.|+IQ.I+|JV.|- Each neutral 

event contributes equally to both belief and disbelief component by |p,+[I'/L.|. Moreover, since 

events have occurred in the interval, the uncertainty component is 0. 

Note that, in real world, events occurring in the distant past has less effect than those that have 

recently occurred. More importance must be given to recent events than past ones. To accommo- 

date this in our model, we assign a non-negative weight w, to the fh interval such that w, > w, 

whenever j < /, ij £ N. We use the formula w,1 = £ Vi = 1,2,..., n where S = "^ ■ to evaluate 

weights of the intervals, satisfying the above condition. 

The experience of A about B in context c is expressed as, jEg = (bß, öfc, UE). The values of 

b£,d£, and UE are given by bg = X?=1 *>i * £/, «fe = £"= 1 wi * dt, and UE = £/L, u>; * ut respectively. 

5.1.2    Evaluating Knowledge 

Definition 2 The knowledge of the truster regarding a trustee for a particular context is defined as 

a measure of the condition of awareness of the truster through acquaintance with, familiarity of or 

understanding of a science, art or technique. 

The knowledge factor is made up of two parts:  direct knowledge and indirect knowledge. 



Direct knowledge can be formally assessed or evaluated. Indirect knowledge is more subjec- 

tive. Direct knowledge can be evaluated through credentials and certificates. Indirect knowl- 

edge can be obtained by reputation. Direct knowledge and indirect knowledge are associated 

with triples K& = (&£>, do, up) and Kj = (b/. dj. uj) respectively. Each piece of direct (in- 

direct) knowledge is categorized into positive, negative, or neutral. The elements of the triple 
(bo, dD, uo) can be computed as follows.   bD = ^su.vc di^^wi^^cu^di^ow.cd^ 

do = #ncga'lvcd?^^rd^IXto0W'^-If there is ™yd,rect knowled8e *">=°> other" 
wise UD — 1 • Similar formulas can be written for indirect knowledge. 

The weight that a truster assigns to each of these knowledge types depends on the problem 

context. The truster assigns the relative weights Wß,w/ for these two types of knowledge, where 

WD, w/ € [0,1 ] and WQ + WJ = 1. The weights are determined by the underlying policy. Truster A's 

knowledge about trustee B in the context c is computed as 

AK
C

B   =   wDxKD + w/xKj 

=   wDx(^D,^D,wD)-hw/x(^/,J/,w/) 

=   (£*, dz, UK) 

where OK = *>D x bo + w/ x bi, 4 = M,Dx4 + w/x du w* = WD 
X
 "D + *7 x "/• 

5.1.3    Evaluating Recommendation 

Definition 3 A recommendation about a trustee is defined as a measure of the subjective or objec- 

tive judgment of a recommender about the trustee to the truster. 

The truster A may obtain a recommendation from multiple recommenders regarding trustee B 

in the context c. The goal is to generate a triple (b,d,u) from each recommender and use these to 

get (bR,dR,UR) which represents the recommendation that A has received about B with respect to 

context c. First, we give the details about how the triple is computed for each recommender. Later, 

we describe how these results are aggregated. 

Let M be one such recommender. The recommender M may or may not have a trust relationship 

with trustee B regarding context c. The truster A can provide a questionnaire to the recommender. 

The recommender is allowed to use the values +1, -1, 0, or ± in filling this questionnaire. The 

value +1 indicates belief, -1 indicates disbelief, 0 indicates neutral, and _L indicates unknown. 

The number of _Ls with respect to the total number of values will give a measure of uncertainty. 

The ratio of the number of +ls together with half the number of 0s to the total number of values 

gives the value for belief. The ratio of the number of-Is together with half the number of 0s to 

the total number of values gives the value for disbelief. If the recommender does not return a 

recommendation, the truster uses the triple (0,0,1) as a recommendation from M. 
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The truster A will have a trust relationship with the recommender M. The context of this trust 

relationship will be to act "reliably to provide a service (recommendation, in this case)". This trust 

relationship will affect the opinion of the recommendation provided by the recommender. The 

truster scales the recommender's opinion about the trustee with this trust value. Scaling the rec- 

ommendation score based on the trust relationship between the truster and the recommender has 

one important benefit. Suppose that the recommender tells a lie about the trustee in the recom- 

mendation in order to gain an advantage with the truster. If the truster does not have belief on the 

recommender to a great degree then the belief on the recommendation will be low with the truster. 

Note also that if the truster disbelieves a recommender to properly provide a recommendation, it 

will most likely not ask for the recommendation. 

The trust relationship that truster A has with trustee M in the context of providing a recom- 

mendation is represented as a 3 x 3 matrix. The rows of the matrix correspond to experience, 

knowledge, and recommendation and the columns correspond to belief, disbelief, and uncertainty. 

This matrix is normalized as outlined in Section 5.1.4 and converted into a triple of the form 

(b,d,u). This triple will be used for the scaling operation. 

To do this scaling, we borrow the concept of "discounting" proposed by Josang [27, 28]. Ac- 

cording to his proposition, if the recommender M disbelieves the trustee B or is uncertain about 

B, then A also disbelieves B or is uncertain about B to the extent scaled down by A ?s belief on M. 

Also, A's disbelief and uncertainty about Afs opinion contribute towards Ays uncertainty about B. 

If M sends the triple M^B*. MJB, M^B as a recommendation about B, and A has the trust on M as 

{A^M, A^M-, AUM), then the recommendation MR
C

B of a recommender M for an entity B to the truster 

A in a context c is given by OA/^, AM^, AMU*B). The values of AMbR, AM^B^ AM^B computed as 

per Josang's formula is: 

AMbB=A bM*Mbß 

AMdB=AbMxMdB 

AMVß -A <*M +A "M +A &M * M Uß 

Recall that the truster A may get recommendations about the trustee B from many different 

recommenders. Then ^'s belief on the recommendation about B is the average of the belief values 

of all recommendations and A's disbelief is the average of the disbelief values of the recommen- 

dations. The same is true for A's uncertainty about the recommendations. Therefore, if \|/ is a 

group of« recommenders then AybR = ^'/X AydR = ^'/^ and AyUR = ^'^ B. Hence, the 

recommendation component is expressed by the triple (AybR, A\?dR, A\?UR)- 
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5.1.4    Normalization of Trust Vector 

Having determined the triples for each component of trust we specify the simple trust relationship 

between the truster A and the trustee B in a context c at time / as 

(bE       dE       uE    \ 

bK       dK       uK (5.1) 

AybR    AydR    AyUR ) 

Given the same set of values for the factors that influence trust two trusters may come up with 

two different trust for the same trustee because they may assign different weights to the different 

factors that influence trust. Which particular component needs to be emphasized more than the 

others, is a matter of trust evaluation policy of the truster. The policy is represented by the truster 

as a trust policy vector. 

Definition 4 The trust policy vector, AW§, is a vector that has the same number of components 

as the simple-trust vector. The elements are real numbers in the range [0,1] and the sum of all 

elements is equal to 1. 

The elements of this vector are weights corresponding to the parameters of trust relationship. Let 

(A —* B)t be the simple trust relationship between truster A and trustee B in context c at time /. Let 

also AWg = flPJfj WK, WR] be the corresponding trust evaluation policy vector elements such that 

WE + WJC + WR= 1 and WE, W&, WR 6 [0,1]. Therefore, the normalized trust relationship between 

a truster A and a trustee B at a time / and for a particular context c is given by 

(A-^B)¥   =   AWBx{A-^B)t 

(bß dg us 

bK dK uK 

AybR AydR AyUR 

=    {A&B, Ad°B, AUß) 

where Abc
B = WExbE + WKxbK + WRXAybR, AdB = WExdE + WKxdK + WRXAydR, Au

c
B = 

WE X US + WKXUK + WR XAyUR. 
A A A 

It follows from above that each element AbB, Ad%, AU°B °fme normalized trust relationship lies 

within [0,1] and Abg + AdB + AUß = I. 

5.2    Reasoning about Trust Relationships in Different Contexts 

The model we have described so far has two shortcomings that needs to be overcome if the model 

is to be useful for real-world applications. First, it is not possible to compute a useful trust vector if 
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the truster does not have any experience, knowledge, or recommendation about a trustee in a given 

context. The model returns the vector (0,0,1) - total uncertainty. Second, the model developed 

so far can reason about trust relationships only with respect to a given context. In other words, it 

allows trust vectors to be compared only when there is an exact match on the context. These two 

shortcomings must be removed in order to make the trust model useful for pervasive computing 

applications. We remove these problems by formalizing the notion of context and describing the 

relationships that exist between different contexts. 

Definition 5 A context C\ is represented by a set of keywords denoted by KeywordSetCr 

Each keyword in KeywordSetCi is used to describe the context Q, The keywords in KeywordSetCi 

are semantically equivalent because they express the same context. For each context C, we require 

that the KeywordSetc should be non-empty and finite. For any two distinct contexts C and C\ 

KeywordSetc C\ Keyword Set c> = {}. In other words, any keyword belongs to exactly one context. 

An example will help illustrate the notion of contexts. The context age can be expressed by the 

keywords { age,year Of Bin h }. 

Consider the two contexts doing a job and doing a job well. Modeling them as distinct concepts 

increases the total number of contexts that must be managed. To solve this problem, we specify 

doing a job as a context and associate a set of values with it. The values in this case will be 

{badly\ neutral, well}. Using these values, we can specify different conditions on the context. 

Each of these conditions represent a derived context. To obtain a derived context from the context 

Ci, each keyword ft, where k G KeywordSetCn must be associated with a domain D* that defines the 

set of values associated with the keyword. The formal definition of derived context appears below. 

Definition 6 A derived context <DCj is one that is specified by a condition A' op v defined over a 

context C, where k G KeywordSetCi and v G At and op is a logical operator compatible with the 

domain of D*. 

To check whether two derived contexts specified using conditions on different keywords are 

equivalent, we need the notion of translation functions. 

Definition 7 The translation function associated with a context pi, denoted as TFCi, is a total func- 

tion that takes as input a condition kopv(k£ Keyword Set Ci) and a keyword k' (k' G KewordSetCi) 

and produces an equivalent condition defined over keyword k'. This is formally expressed as fol- 

lows. TFCi : CondCl x KeywordSetCi —► CondCl where CondCi is the set of all valid conditions 

specified over the keywords in Keyword Set Cr 

Since the translation function is total, for every given valid condition and keyword there exists 

an equivalent condition defined on the given keyword. Several steps are involved in developing 

the translation function. To express k op v in terms of//, we need to first convert the value k to an 
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equivalent value that is in the domain of//. This step is performed by conversion functions which 

convert the value of one keyword to an equivalent value of another keyword. The second step is to 

convert the operator op into an equivalent operator op' that is suitable for the domain of A-7. The 

definition of the conversion function together with the domain of the keyword can determine how 

the operator must be changed. 

Consider the two keywords age and yearOfBirth. Suppose we want to translate age > 18 to an 

equivalent condition defined over yearOfBirth. The first step is to convert age = 18 to an equivalent 

value defined over yearOfBirth. The function that converts age to yearOfBirth will be specified 

as: yearOfBirth = currentYear - age. For age = 18, this function returns yearOfBirth = 1987. 

Since yearOfBirth and age are inversely related, (that is, age increases as yearOfBirth decreases) 

the operator > is inverted to obtain <. The results obtained by the TFCi function in this case will 

beyearOßirth< 1987. 

5.2.1    Relationships between Contexts 

We now describe two kinds of relations that may exist between distinct contexts. One is the gen- 

eralization/specialization relationship existing between related contexts. The other is the composi- 

tion relationship between possibly unrelated contexts. 

Specialization Relation 

Distinct contexts may be related by the specialization relationship. The specialization relation is 

anti-symmetric and transitive. We use the notation Ci C Cj to indicate that the context C, is a 

generalization of context Cj. Alternately, context Cj is referred to as the specialization of context 

C$. For instance, the contexts makes decision and makes financial decisions are related by the 

specialization relationship, that is, makes decisions C makes financial decisions. Also, makes 

financial decisions C makes payment decisions. By transitivity, makes decisions C makes payment 

decisions. 

Each specialization relationship is associated with a degree of specialization. This indicates 

the closeness of the two concepts. For instance, makes payment decisions is a specialization of 

makes decision, and makes payment decisions is also a specialization of makes financial decisions. 

However, the degree of specialization is different in the two cases, makes payment decision is 

closer to makes financial decision than makes decision. The degree of specialization captures this 

difference. Since two contexts related by specialization will not be exactly identical, the degree 

of specialization will be denoted as a fraction. The exact value of the fraction will be determined 

using domain knowledge. 
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Composition Relation 

Specialization captures the relationship between contexts that are related. Sometimes unrelated 

contexts can be linked together using the composition relation. We now describe this composition 

relation. A context in our model can either be an elementary context or a composite context. An 

elementary context is one which cannot be subdivided into other contexts. A composite context is 

one that is composed from other contexts using the logical and operation. The individual contexts 

that form a composite contexts are referred to as the component contexts. A component context 

can either be composite or elementary. 

We use the notation Ct <3C Cj to indicate that the context C\ is a component of context Cj. In 

such cases, C\ is referred to as the component context and Cj is the composite context. For instance, 

we may have the component contexts secure key generation and secure key distribution that can be 

combined to form the composite context secure key generation and distribution. This is denoted 

as secure key generation <C secure key generation and distribution. 

Sometimes a composite context & may be composed from the individual contexts Cj, Ck and 

Cm. All these contexts may not contribute equally to form &• The degree of composition captures 

this idea. A degree of composition is associated with each composition relation. Since two contexts 

related by composition will not be exactly identical, the degree of composition is denoted as a 

fraction. The sum of all these fractions equals one if d is composed of Cy, £"*, and Cm only. If 

d is composed of Cjt Ck, and Cm and also other component contexts, then the sum of fractions 

associated with Cu Ck, and Cm must be equal to or less than one. The exact value of the fraction 

representing the degree of composition will be determined by domain knowledge. 

Context Graphs 

The specialization and the composition relations can be described using one single graph which 

we refer to as the context graph. Each node «, in this graph corresponds to a context. There 

are two kinds of weighted edges in this graph: composition edges and specialization edges. A 

composition edge (w/.wy), denoted by a solid arrow from node «/ to node nj, indicates that the 

context represented by node n( is a component of the context represented by node rtj. The weight 

on this edge indicates what percentage of the component context comprises the composite context. 

A specialization edge (np,nq), shown by a dashed arrow from node np to node nq, indicates that 

the context represented by node np is a specialization of the context represented by node nq. The 

weight on the edge indicates the degree of specialization of a context. 

Unrelated contexts correspond to nodes in different context graphs. Each context corresponds 

to only one node in the set of context graphs. We denote the context graph associated with context 

d as CQ c . The formal definition of a context graph is as follows. 

Definition 8 A context graph CQ = (fl£, £c U £5) is a weighted directed acyclic graph satisfying 
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the following conditions. 

• 9£ is a set of nodes where each node w, is associated with a context Q and is labeled with 

Keyword Set Cr KeywordSetCi is the set of keywords associated with the context C\. 

• The set of edges in the graph can be partitioned into two sets £c and £5. For each edge (nur\j) 

£ £c, the context & corresponding to node w, is a component of the concept Cj corresponding 

to node w;. The weight of the edge (w/,wy), denoted by w(«,,«y), indicates the percentage 

of component context that makes up the composite context. For each edge (rii.nj) € £>-, the 

concept Cj corresponding to node w, is a specialization of concept Cj corresponding to node 

ffj. Here again the weight of the edge («,,/fy), denoted by w(/i,-7/i7), indicates the degree of 

specialization. 

4/5 ---'"" 
Symmetric key 
establishment 

1/3 J I vl/3 

Key 
generation 

Key 
distribution 

Key 
.i<;rcc!*icni 

1 A, M %, 
»Vj 

Manual key 
distribution 

Electronic key 
distribution 

Cryptographic key establishment 

Vr^^^— 
4/5 

• Dotted lines represent generalization-specialization' relationship 

* Solid lines reprcsct 'composition-component' relationship 

Asymmetric key 
establishment z 1/2 

Key 
generation 

Key 
distribution 

l'"3 •-„2/3 

Stabe public 
•r.bution 

Ephemeral public 
key distribution 

Figure 5.1: Specialization and composition relationships 

Figure 5.1 gives an example of a context graph that is associated with the context cryptographic 

key establishment. The solid arrows in this graph indicate composition relationships and the dashed 

arrows indicate generalization/specialization relationships. The context cryptographic key estab- 

lishment can have two specializations, namely, symmetric key establishment and asymmetric key 

establishment. The weight on the edge connecting this symmetric key establishment with crypto- 

graphic key establishment indicates the degree of specialization. For instance, if symmetric key 

establishment is very closely related to key establishment, the degree of specialization may be la- 

beled as j. Similarly, the edge connecting asymmetric key establishment to key establishment may 

be labeled as |. Each of these specific contexts is a composition of some component contexts. 

Generation and distribution of symmetric keys has three components - key generation, key distri- 

bution, and key agreement. A weight of ^ can be assigned to each of these components contexts. 

Similarly, generation and distribution of asymmetric keys can have components key generation and 

key distribution with weights 5 each. 
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A component context can also be a generalization of some specialized contexts. In the above 

example the context key distribution has two categories - manual key distribution and electronic 

key distribution. Similarly key distribution in asymmetric keys can be thought of as generalization 

of static public key distribution and ephemeral public key distribution. 

5.2.2 Computing the Degree of Specialization and Composition 

Consider two contexts Q and Cj where Ci C Cj, that is, Cj is a specialization of C,. The degree of 

specialization is computed as follows. Let «,, nj be the nodes corresponding to contexts C, and Cj 

in the weighted graph. Let the path from w, to nj consisting of specialization edges be denoted as 

(w/,n/+i, «,-+2, • • • inj-1»*/)- The degree of specialization = TE^wfapi np+\). This corresponds to 

our notion that the similarity decreases as the length of the path from the generalized node to the 

specialized node increases. Note that, in real world there may be multiple paths from Ci to Cj. In 

such cases, it is important that the degree of specialization yield the same values when any of these 

paths are used for computation. 

Consider two contexts C, and Cj such that Cj is a component of C,. Degree of composition 

captures what portion of C, is made up of Cj. The degree of composition is computed as follows. 

Let w„ nj be the nodes corresponding to contexts Ci and Cj in the context graph. Let there be 

m paths consisting of composition edges from w, to nj. Let the ^th path (1 < q < m) from «, to 

nj be denoted as {nj,niq+) ,niq+2, ■ • ;»J>yf-l»*/)- The degree of composition = X™=1 (w(w;,w/)?+]) x 

5.2.3 Relationships between Context Graphs 

Different information sources may use different context graphs. Comparing information or com- 

bining information that uses different context graphs may not give correct results. Before pro- 

ceeding with the comparison of information obtained from different sources, the context graphs 

of these sources must be merged. Note that, sometimes context graphs cannot be merged because 

they contain conflicting information. To understand why this happens, we first need to elaborate 

on the relationships that can exist between a pair of context graphs. Two context graphs can be 

related by any of the following relationships: (i) equality, (ii) unrelated, (iii) subsumes, and (iv) 

incomparable. 

Intuitively, two context graphs are equal if they have the same set of nodes, composition edges, 

and specialization edges. Moreover, each of these edges must have identical weights in the two 

graphs. Sometimes two context graphs are unrelated. They do not have any common context. It is 

conceivable that these graphs will be used for different situations. Often times two context graphs 

are comparable but one has more information than the other. In such cases, the context graphs are 

related by the subsumes relation. Often times two context graphs, neither of which subsumes the 
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other, may be comparable. Such graphs contain different but related information. Moreover, they 

never have any conflicting information. Such graphs can be merged without human intervention. 

Two context graphs that are not unrelated are incomparable if they are not comparable. Incompara- 

ble graphs occur when the underlying assumptions are different. Since the conflicts are generated 

because of the differences in the underlying assumptions, they cannot be resolved without human 

intervention. 
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Figure 5.2: Unrelated context graphs 
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Figure 5.3: Context graphs having subsumes relation 

When a truster A cannot determine the values related to his trust relationship with trustee B 

for a context C, the values can be obtained from one or more related contexts, say, C\. We use 

the component values of the individual parameters recommendation, experience, and knowledge 

from C, and use these to compute the trust vector for C. Note that, a context C may be related to 

many other contexts, say, C„ fy and Ck- Here it is important to choose the closest related context 

from this set and use it for extrapolation. The details of reasoning about trust in the presence of 

incomplete information appears in our related papers [40, 41]. 
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5.2.4    Combining Trust Vectors for Collaborations 

Ad hoc collaborations such as those frequently occurring in pervasive computing applications, 

typically involve many cooperative entities in a relationship within a specific context. Combination 

of trust is needed for the interoperability of these cooperating agents. Whenever a group of agents 

are working together, combining their individual trust relationships is necessary to have an idea 

about the expected behavior of the group. Keeping this in mind we define combination operators 

for trust relationships. Different possibilities like one-to-many, many-to-one, and many-to-many 

relationships are addressed. We also formalize the effect of reconfiguration of these groups on the 

corresponding trust relationships. As in the comparison operation between trust relationships, we 

assume that the contexts of the trust relationships are the same. If needed and possible, we can 

extrapolate trust relationships as per section 5.2.3. 

Trust relationship between a truster and a group of trustee 

In real life, we often encounter situations where we have to take decisions based on information 

coming from different sources. Consider the scenario where an entity has existing trust relation- 

ships with different service providers for a particular service. The truster expects some service 

which is provided collectively by the service providers. The truster has some expectation from 

each individual provider. To have an idea about the service provided by the group, the combined 

trust of the service providers needs to be estimated. Therefore, the receiver needs a mechanism 

to combine the existing trust relationships to estimate an initial composite trust relationship. The 

group of service providers is considered as a single entity (trustee). Once the combination is done, 

the truster no longer considers the trust relationships with individual trustee. The truster begins 

with the combined group as a single entity and subsequently a trust relationship with the group 

evolves. We use the disjunction operator of subjective logic to define an initial trust relationship 
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between a truster and the group. 

Assume a truster A has trust relationships T = (A -^-* B)^n = {bT,dT,uT) and V = (A -^-» 

C)£ = (b'P\d-Tl\u-Tf) with two trustees B and C at the same time tn and in the same context c. 

A decides to have a trust relationship with the combined group BC in the same context, as follows: 

{A ~* BC)^n — (b,d, ü) where b = bj + bp - bj x bp, d = dj x ^7-/, and ü = dr xuT' + dT< x 

Trust relationship between a group of trusters and a single trustee 

Next, we address the situation where different trusters having different trust relationships with the 

same trustee decides to form a group.   After forming the group the trusters behave as a single 

truster. We need to define a way to combine these different trust relationships to get the initial 

trust for the group. This initial trust gives the starting point of a trust relationship between the 

two entities. Thereafter, this trust evolves as before. But before the collaboration can succeed all 

trusters need to agree to a common policy as to how to continue to evaluate the trustee as a single 

group. In addition, the members need to agree about the following: (i) a common interval length to 

determine experience as well as trust, (ii) a common set of recommenders whom the group consider 

suitable for recommendation purposes, (iii) a common policy for evaluating trust relationships 

with recommenders, and (iv) a common trust evaluation policy vector to assign weights to each 

component. Based on this agreement each truster needs to go back and reevaluate their individual 

trust relationships. Let the updated trust relationships be t = (67-, ^7-, £7-) and t' = (bp^dp^p) 

respectively.   We use the consensus operation in subjective logic to define the combined trust 

relationship between the group AB and the trustee C, as T = {AB -^-> C)£ = (bf,df,uf), where 

,       br x up + iv x UT    .      dj x up -Ydp x üf üT X üv 
bf = ~ :: : —, dT = ; ; ;—, and uT = ; ; r— 

Uj + Up — UjX Up Uf + Up — UjX Up UT + Up — UT X UT' 

When more than two trusters need to form a collaboration, the composite trust relationship is 

formed by first combining two of the trusters to form a smaller group and then enlarging the group 

one more truster at a time till every one of them has been included. 

Trust relationship between a group of trusters and a group of trustees 

We now explore the situation when a group of trusters Qr forms a trust relationship with a group of 

trustees Qe in some common context c. We can formalize this by combining the above two cases. 

Combination can take place in different ways. 

1. If the group of trustees ge already exists, then each truster A{ must already have, or must 

build a trust relationship (/*, —+ ge)? as described in section 5.2.4. Then i4,'s form the 

truster group gr with ge, considering ge as a single trustee, as described in section 5.2.4. 

2. If the truster group gr already exists with m different trust relationships like (gr —♦ B$ 

for / = 1,2,...,fli, then {gr —» ge)? can be formed as in section 5.2.4. 
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3. If neither the group of trusters or the group of trustees exist then one of the groups has to be 

formed first after which then the other group is formed as explained above. 

Next we examine the effect of reconfiguration of a group on the trust relationship. 

Reconfiguration of a group 

Ad hoc collaborations are very dynamic in nature. Consequently, anytime after a group is formed 

one or more members may leave or a new member may join necessitating re-evaluation of corre- 

sponding trust relationships. We have two cases to consider, namely, (i) re-evaluation owing to 

reorganization of trustee group, and (ii) re-evaluation owing to reorganization of truster group. 

We consider the case where a new trustee, C joins an existing group of trustees G at a time 

to. For the purpose of re-evaluation of the trust relationship the truster, A, assumes the group G as 

a single trustee. The new trust relationship is then computed in the manner discussed in section 

5.2.4. If a trustee leaves a group the re-evaluation of the trust relationship proceeds as follows. 

Assume C, the exiting trustee, had joined the group G at time to and is leaving the group G' at time 

/„. When C leaves the group it is as if a dummy trustee C with a trust relationship diametrically 

opposite to that of C joins the group such that the effects of C is mitigated in the group. However, 

at time /„ C's effective trust value has degraded from TQ to some value Vc = (b'c,d'c,vl^). This 

is the value that needs to be mitigated. A trust relationship that is diametrically opposite to T'c is 

tc = (bc>dc,üc), where be — d'cdc — b'c, and üc = w^ The new trust relationship between the 

group G' \C is then obtained by assuming that the dummy trustee C joins the group. The exit of a 

group member may or may not necessitate a change in the trust evaluation policy. If the rank of the 

trust relationship Tc was greater than the rank of the trust relationship Tc (G being the group that C 

joined) then the trust evaluation policy needs to be changed after C leaves. The next re-evaluation 

of the trust relationship TGr\C will be based on the new policy. 

When a truster B joins an existing group of trusters G', the trust relationship is re-evaluated by 

considering the group G' as a single truster and then following the principles discussed in section 

5.2.4. Removal of a truster from the group does not affect the group trust relationship However, 

the remaining group members may decide to revisit the policy for trust evaluation. The new policy 

will hence forth decide how the trust relationship is re-evaluated the next time. 

5.3    Conclusions and Future Work 

In this work, we propose a new trust model based on subjective logic for use in pervasive computing 

applications. We identify three parameters namely, experience, knowledge and recommendation 

that contribute towards defining this trust relationship. We propose expression for evaluating these 

factors. Next we introduce the concept of normalized trust. We show how to factor in a notion of 
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trust policy in computing the trust vector. We also formalize the notion of trust contexts and their 

relationships, so that the trust model is interoperable and allows trust computation on the basis 

of extrapolation in the absence of enough information. Finally, we propose operators to compose 

trust relationships for dynamic collaboration. 

A lot of work remains to be done. We plan to extend the model to support trust chains. We 

need to validate our model using real-world data. Finally, we plan to investigate how this model 

can be used to provide security services in pervasive computing application. 
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Chapter 6 

Risk Estimation and Security Provisioning 

Pervasive computing applications typically involve information flow across multiple domains. 

Thus, any security breach in an application can have very far-reaching consequences. Effective 

security mechanisms are obviously needed; however, these can be quite different from those typ- 

ically deployed in conventional applications under similar circumstances. The choice of security 

mechanisms in pervasive environments is influenced by a number of factors. Some of the more 

important among these are the resource constraints of the devices, the cost of deploying security 

mechanisms on these devices, and the attack coverage provided by defenses. How to select the 

defenses is referred to as the security provisioning problem. To make matters difficult, security 

administrators often have to work within a fixed budget that may be less than the minimum cost of 

system hardening. Thus, they have to select a subset of the required security hardening measures 

and yet minimize the residual damage to the system caused by not plugging all required security 

holes. With cost-effectiveness occurring as a major factor in deciding the extent to which an orga- 

nization can secure its pervasive computing environment, it is not sufficient to detect the presence 

or absence of a vulnerability and implement a security measure to rectify it. Rigorous analysis is 

required to understand the contribution of the vulnerabilities towards any possible damage to the 

organization's assets. Often, vulnerabilities are not exploited in isolation, but rather used in groups 

to compromise a system. Similarly, security policies can have a coverage for multiple vulnera- 

bilities. Further, an attacker's perceived gains through a specific attack strategy can (and should) 

influence the security administrator's decision to employ a particular defense strategy. Thus, cost- 

effective security management requires evaluating the different scenarios that could lead to the 

damage of a secured asset as well evaluating the attacker's various possible attack strategies, and 

then come up with an optimal set of security policies (or, a defense strategy) to defend such assets. 

In this chapter we formalize these issues and identify possible resolutions to some of the de- 

cision making problems related to securing a pervasive computing application. We first develop 

a formal model of attack trees to encode the contribution of different security conditions leading 

to system compromise. We formalize the notions of attack and defense strategies based on this 
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model of attack trees. Next, we develop a model to quantify the potential damage that can occur 

in a system from the attack modeled by the system attack tree. We develop models of cost for 

defense and attack strategies. We then propose two models for the risk assessment and the security 

provisioning problem. The first model does not consider the attacker's strategy but treats the secu- 

rity administrator's problem as a multi-objective optimization problem to maximize security and 

minimize cost. The second model treats the security administrator's problem as a payoff problem 

to decide how security controls can be incorporated to maximize the return on investment under 

the scenario that an attacker is actively engaged in maximizing its return on attacks. 

6.1    Attack Tree Model 

The vulnerabilities present in a network are often exploited in groups. Materializing a threat usu- 

ally requires the combination of multiple attacks exploiting different vulnerabilities. Representing 

different scenarios under which an asset can be damaged thus becomes important for preventive 

analysis. Such representations not only provide a picture of the possible ways to compromise a 

system, but also help to determine a minimal set of preventive actions. Given the normal opera- 

tional state of a system an attack could possibly open up avenues to launch another attack, thereby 

taking the attacker a step closer to its goal. The presence of a vulnerability in a system does not 

imply that it can always be exploited. A certain state of the system in terms of access privileges, 

resource constraints or machine connectivities, need to be a prerequisite to be able to exploit a 

vulnerability. Once the vulnerability is exploited, the state of the system can change, enabling the 

attacker to launch the next attack in the sequence. Such a pre-thought sequence of attacks gives 

rise to an attack scenario. We capture the inter-relationships between different vulnerabilities that 

play together to form the basis of attacks, in the notion of attack trees. Here we briefly discuss the 

attack tree model. More details are available in our papers [9, 39, 10]. 

Different properties of the pervasive computing application effectuate different ways for an 

attacker to compromise a system. We first define an attribute-template that lets us generically 

categorize these system properties for further analysis. 

Definition 9 An attribute-template is a generic property of the hardware or software configuration 

of a system that includes but is not limited to the following: 

• system vulnerabilities (which are often reported in the vulnerability database such as Bug- 

Traq, CERT/CC, or netcat). 

• network configuration such as open port, unsafe firewall configuration, etc. 

• system configuration such as data accessibility, unsafe default configuration, or read-write 

permission in file structures. 

• access privilege such as user account, guest account, or root account. 
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• Connectivity 

• resource constraints 

Attribute-template lets us categorize most of the atomic properties of the system that might be of 

some use to an attacker. For example, "running SSH1 vl.2.23 on FTP Server" can be considered 

as an instance of the system vulnerabilities template. Similarly, "user access on Terminar is an 

instance of the access privilege template. Such templates also lets us specify the properties in 

propositional logic. We define an attribute with such a concept in mind. 

Definition 10 An attribute is a propositional instance of an attribute-template taking either a true 

ox false value. 

The success or failure of an attacker reaching its goal depends mostly on what truth values the 

attributes in the system take. Similarly, the security administrator can falsify some of the attributes 

using some security policies and controls to prevent an attack from succeeding. We formally 

define an attack tree model based on such attributes. Since we consider an attribute as an atomic 

property of a system, taking either a true or false value, most of the definitions are written using 

propositional logic involving these attributes. 

Definition 11 Let S be a set of attributes. We define Att to be a mapping Att :SxS^> {true, false} 

and Att(sc,sp) = truth value of sp. a = Att(sc,sp) is an attack ifsc ^ sp A a = sc <-> sp. sc and sp 

are then respectively called a precondition and postcondition of the attack, denoted by pre(a) and 

post(a) respectively. 

Att(sc,sp) is a <j>-attack if 3non-empty S' C S\Att(sc,sp) = /\SjAsc *-* sp where s,(^ sc)85*. 

An attack relates the truth values of two different attributes to embed a cause-consequence relation- 

ship between the two. For example, for the attributes sc = "vulnerable to sshdBOF on machine A" 

and sp —"root access privilege on machine A", Att(sc,sp) is an attack - the sshd buffer overflow 

attack. We would like to clarify here that the bi-conditional logical connective "<->" between sc 

and sp does not imply that sp can be set to true only by using Att(sc,sp); rather it means that given 

the sshd BOF attack, the only way to make sp true is by having sc true. In fact, Att( "vulnerable 

to local BOF on setuid daemon on machine A",sp) is also a potential attack. The <j>-attack is in- 

cluded to account for attributes whose truth values do not have any direct relationship. However, 

an indirect relationship can be established collectively. For example, the attributes sCx ss "running 

SSH1 vl.2.25 on machine A" and sCl = "connectivity(machine B, machine A)" cannot individually 

influence the truth value of sc, but can collectively make sc true, given they are individually true. 

In such a case, Att(sCl ,sc) and Att(sC2,sc) are <|>-attacks. 

Definition 12 Let A be the set of attacks, including the ({>-attack. An attack tree is a tuple AT = 
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1. Sroot is an attribute which the attacker wants to become true. 

2. S = Niraernai UN extend U {sroot} is a multiset of attributes. Nexternal denotes the multiset of 

attributes sx for which $aeA\sjEpost(a). Ninternai denotes the multiset of attributes Sj for 

which 3d] MiZA\[sjZpre(a\) A SjZpost(ai)\. 

3. xC S x S. An ordered pair {spre,Spost)£* if 3azA \ [spre£ pre(a) A spostEpost(a)}. Further, if 

s/eSand has multiplicity «, then Hsi,52,.. .,5wßS| (*?,*i),(£j,J2),- •■ , (s/,sn)ex, and 

4. e is a set of decomposition tuples of the form (sj,dj) defined for all SjZNimernai U {snot} 

and djE{AND,OR}. dj is AND when /\[SJ A (j/,5y)ex] <-► Sj is rrwe, and OR when Vfo A 

/ 1 
(j,-,5y)ex] «-+ $y is true. 

These set of definitions define nodes of the attack tree as propositions and edges relate the truth 

value of a node with that of its children. Leaf nodes on the tree represent propositions related to the 

different system states, which may be true or false depending on what defenses are in place. The 

truth values of the leaf nodes progressively define if the propositions on the internal nodes would 

be true or false. If no defense is installed, all leaf nodes would be true. This would finally lead to 

the root node to become true as well. In such a case, the attacker is assumed to have successfully 

met its objective. Due to the presence of the AND-OR decompositions, the root node may become 

true even if all leaf nodes are not true. Similarly, all leaf nodes need not be false for the root to 

become false. 

Fig. 6.1 shows an example attack tree, with the attribute "root access on machine An as sr0ot- 

The multiset S forms the nodes of the tree. The multiset Ncxjemai resemble the leaf nodes of the 

These nodes reflect the initial vulnerabilities present in a network and prone to exploits. Since, 

an attribute can be a precondition for more than one attack, it might have to be duplicated, hence 

forming a multiset. The attribute "machine A can connect to machine ET in the example is one 

such attribute. The set of ordered pairs, x, reflect the edges in the tree. The existence of an edge 

between two nodes imply that there is a direct or indirect relationship between their truth values, 

signified by the decomposition at each node. The AND decomposition at a node requires all child 

nodes to have a truth value of true for it to be true. The OR decomposition at a node requires only 

one child node to have a truth value of true for it to be true. Using these decompositions, the truth 

value of an attribute SjeNinternaj U {sroot} can be evaluated after assigning a set of truth values to 

the attributes S,eA'external- 

6.2    Defense and Attack Strategies 

In order to defend against possible attacks, the system administrator can choose to implement a 

variety of safeguard technologies. Each choice of action can have a different cost involved. Some 

measures may have multiple coverages, but with higher costs. The defender has to make a decision 
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Figure 6.1: Example attack tree 

and choose to implement a subset of these policies in order to maximize the resource utilization. 

Definition 13 Given an attack tree (sroo/,S,T,£), the mapping D : Nex/erna/ -* {true, false} is a 

defense if 3s,- eN^^ D{si) = false. 

We use the term security control synonymously to indicate a defense. A defense is nothing but a 

preventive measure to falsify one or more leaf nodes thereby stopping an attacker from reaching its 

goal. Further, in the presence of multiple defenses D*, the truth value of an attribute si G A^x/er«a/ 

is taken as A At (•*/)• Given a defense D, the set of all Sj € A^ma/I D(si) = false is called the 

coverage of D. Hence, for a given set of defenses, we can define the coverage matrix specifying 

the coverage of each defense. 

Definition 14 For a given set of d defenses, the defense strategy So = (So\SD2,--iSDd) is a 

boolean vector indicating which defenses are chosen by the defender. So, = 1 if defense D, is 

chosen, zero otherwise. 

The choice of this vector specifies which leaf nodes in the attack tree would be false to begin 

with. An attacker typically exploits leaf nodes that are not covered by any defense in order to 

progressively climb up the tree, inflicting some amount of damage to the network at every step. 

However, it is not always correct to assume that an attacker can no longer exploit some parts of 

the attack tree because of the installed defenses. With the appropriate tools and knowledge, an 

attacker may have the potential to bypass a defense as well. In other words, leaf nodes that were 

made false by a defense can be reverted back to being true. We thus assume an attacker with the 

proper knowledge to able to breach a defense. However, in order to do so, the attacker will have 

to incur some cost, often related to the number of defenses in place and the difficulty to breach 

them. If an attacker's gains are less than the cost incurred, then its effort to breach the defense is 



not worth the time and value. This primarily motivates the defender to still install defenses despite 

there being a chance of breach. 

Given that the attacker can bypass an installed defense (after incurring a cost), it can start its 

exploits from any leaf node on the attack tree. The attacker's progress towards the root is then 

decided by the leaf nodes it chooses. Note that choosing all leaf nodes that can collectively make 

an intermediate node true need not always be the best approach for the attacker. For instance, 

given that defenses will be in place at different levels of the tree and the attacker will have to incur 

a cost to bypass them, it is possible that the attacker derives more payoff by inflicting damages at 

different parts of the attack tree rather than continuing along a single scenario all the way up to the 

root. An attack strategy is thus defined as follows. 

Definition 15 Let a denote the number of unique leaf nodes in an attack tree. An attack strategy 

§A = (SA] SA2, • • • ,SA0) is a boolean vector indicating which leaf nodes in the tree are chosen by 

the attacker for exploit. Sj, = 1 if node A, G ^external is chosen, zero otherwise. 

An attack strategy specifies the path(s) that the attacker pursues to an intermediate level or the 

top level of the attack tree. The success of the strategy depends on the defense strategy adopted by 

the defender, as well as the number of levels it can move up on the tree. Another way to visualize 

an attack strategy is the set of leaf nodes that the attacker assumes to be true, or will make true by 

breaching the defenses protecting them. 

6.3    Cost Model 

In order to defend against attacks, a security manager can choose to implement a variety of safe- 

guard technologies. Each of these comes with different costs and coverages. For example, to 

defend against the ftp/.rhost exploit, one may choose to apply a security patch, disable the FTP 

service, or simply tighten the write protection on the .rhost directory. Each choice of action can 

have a different cost. Besides, some measures have multiple coverages, but with higher costs. A 

security manager has to make a decision and choose to implement a subset of these policies in order 

to maximize the resource utilization. However, this decision is not a trivial task. Security planning 

begins with risk assessment which determines threats, loss expectancy, potential safeguards and 

installation costs. 

The potential damage, Pj, represents a unitless damage value that an organization might have 

to incur in the event that an attribute sj becomes true. Based on Butler's multi-attribute risk- 

assessment framework [6, 7], we specify below the four steps to calculate the potential damage for 

an attribute Sj. 

Stepl: Identify potential consequences of having a true value for the attribute, induced by some 

attack. In our case, we have identified five outcomes - lost revenue ($$$), non-productive 
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downtime (hrs), damage recovery ($$$), public embarrassment (severity scale) and law 

penalty (severity scale) - denoted by x\j,X2j,xy, x^j and x5j. 

Step2: Estimate the expected number of attack occurrence, Freqj, resulting in the consequences. 

A security manager can estimate the expected number of attack from the organization-based 

historical data or public historical data.l 

Step3: Assess a single value function, Pj/(x*/), for each possible consequence. The purpose of this 

function is to normalize different unit measures so that the values can be summed together 

under a single standard scale. 

Wtf-a^**   ***** <61> 

Step4: Assign a preference weight factor, W^ to each possible consequence. The weight factor 

represents an organization's concerns for different outcomes. A security manager can rank 

each outcome on a scale of 1 to 100. The outcome with the most concern would receive 

100 points. The manager ranks the other attributes relative to the first. Finally, the ranks are 

normalized and set as W-t. 

The potential damage for the attribute can then be calculated from the following equation. 

Pj=Ff*qjx%mViAxij) (6.2) 
i=\ 

When using an attack tree, a better quantitative representation of the cost is obtained by con- 

sidering the residual damage once a set of security policies are implemented. Hence, we augment 

each attribute in the attack tree with a value signifying the amount of potential damage residing in 

the subtree rooted at the attribute and the attribute itself. 

Definition 16 Let AT = (sroot ■ S. T. e) be an attack tree. An augmented-attack treeATaug = AT\(I,V) 

is obtained by associating a tuple (/,-, Vj) to each SjtS, where 

1. /, is an indicator variable for the attribute s„ where 

/! = < 
0 , if Si is false 

1 , if Si is true 

2. V,is a value associated with the attribute *,. 

In this work, all attributes s/tAfex/ema/ are given a zero value. The value associated with SjZNiraernai U 

'Also known as an incident report published annually in many sites such as CERT/CC or SANS.ORG. 
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{sroot} is then computed recursively as follows. 

Vj = l 

X*i   +IjPj    JfdjisAND 

Max Vk + IjPj    , ifdj is OR 
(6.3) 

Ideally, Pj is same for all identical attributes in the multiset. We took a "panic approach" in 

calculating the value at each node, meaning that given multiple subtrees are rooted at an attribute 

with an OR decomposition, we choose the maximum value. The residual damage of the augmented 

tree is then defined as follows. 

Definition 17 Given an augmented-attack tree (sroo/,S,T,e)|(/, V) and a vector T = (7]), 7]e{0:1}; 1 < 

i < m, the residual damage is defined as the value associated with sroot, i.e.,RD(T) = Vroot 

Similar to the potential damage, the security manager first lists possible security costs for the 

implementation of a security control, assigns the weight factor on them, and computes the normal- 

ized value. The only difference is that there is no expected number of occurrence needed in the 

evaluation of security cost. In our case, we have identified five different costs to implementing a 

security control - installation cost ($$$), operation cost ($$$), system down-time (hrs), incompati- 

bility cost (scale), and training cost ($$$). The overall cost Cy, for the security control SCJy is then 

computed in a similar manner as for potential damage, with an expected frequency of 1. The total 

security cost for a set of security controls implemented is then defined as follows. 

Definition 18 Given a set of m defenses, each having a cost C,; 1 < i < m, and a vector T = (7}), 

7}e{0,1}; 1 < i < m, the defense strategy cost is defined as SCC{f) = Jg,, (7J-C,-) 

From these two models of defense strategy cost and residual damage we can formulate the 

system administrator's decision problem as finding a defense strategy that minimizes the defense 

strategy cost as well as minimize the residual damage. To perform this optimization, the sys- 

tem administrator needs to express a preference - whether to give more emphasis on the defense 

strategy cost or on the residual damage. Depending on this preference the decision problem will 

provide the best defense strategies at specific cost levels. By setting the residual cost to zero, the 

system administrator can come up with a defense strategy that guarantees complete system safety 

under closed world assumption (that is no zero day attack). However, owing to budget constraints, 

the system administrator may need to understand better the tradeoff between defense strategy cost 

and network safety. Additionally, the system administrator may also want to determine optimal, 

yet robust defense strategies. These are strategies that can tolerate some (predetermined) degree 

of failures (that is, compromise from attacks) yet continue to ensure no further residual damage. 

Such strategies provide some latitude against zero day attacks.Towards this end, we formulate the 

first security provisioning problem as a multi-objective robust optimization problem. 
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The Security Provisioning Problem as a Multi-objective Robust Optimization Problem 

Let f = (7}) be a boolean vector.   A perturbed assignment of radius r, fr, is obtained by 

inverting the value of at most r elements of the vector f. The value r determines how many security 

controls may fail before the system is compromised. The robust optimization problem can then 

be defined as follows: Given an augmented-attack tree (sroo,,S,T,e)|(7, V) and m security controls, 

find a defense strategy f* = (7)*), 7]*e{0,1}; 1 < i < m, which minimizes the total security control 

cost and the residual damage, satisfying the constraint max RD(fr') - RD(f*) < D where, D is the 
f; 

maximum perturbation allowed in the residual damage. 

6.4    Payoff Model 

To factor in the attacker's strategy, we observe that the cost of realizing an attack strategy is related 

to the effort that the attacker has put forward in overcoming any defenses put forward. We model 

this cost under an assumption that stronger defenses are likely to have a higher cost of implemen- 

tation. Under this assumption, we measure the relative difficulty to breach a defense - a value in 

[0,1] - and assign the cost to breach it, BC(-), as a fraction (given by the difficulty value) of the 

cost of implementation of the defense, i.e.#C(D,) = J^c x Q 

Definition 19 Given a set of d defenses, a defense strategy So and an attack strategy SA on an at- 

tack tree^r, ±Q attack strategy cost ASCxstehneddS ASC(SD,SA) =Sf=1 Iy|D/(/<;)=/fl/5e[^C(A)%,5/iy] 

The expression above iterates through the leaf nodes covered by a particular defense. There- 

after, the cost to breach the defense is added to the attack strategy cost if the defense is part of the 

defense strategy and the leaf node is part of the attack strategy. When a breach occurs, the cost paid 

by the defender to install it (C,) is a loss, called the breach loss BL(-) and expressed in a manner 

similar to the above equation. BL(SD) = lf=1 Hj\Di(Aj)=/aise[ciSDiSAj] 

We then define the defender and attacker payoffs as follows. 

Definition 20 For a given defense strategy Sp and an attack strategy SA on an augmented-attack 

XreeATaug, the defender's payoff POD is given as, POD(SD,SA) = £>/(ÖJ) +DSC(SD) -DI(SD,SA) - 

BL(SD) and the attacker spayoffPOA is given as, POA(SD,SA) = DI(SD,SA) - ASC(SD,SA) 

Here, D/(0,T) signifies the maximum damage possible on the attack tree. This happens when 

there are no defenses installed and the attacker exploits all leaf nodes. 0 represent the all zero 

vector and 1 is the all one vector. Note that both payoff functions employ the same DI value 

derived from the attack tree. More details can be found in our paper [10]. 

To account for differences arising in the magnitudes of the values of the POD and ASC func- 

tions, we normalize them. The normalized functions for POD and POA - in the range of [0,1] - 
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are then given as, 

.,   _ 

PODnormWD^A) = ~ =-^r- 
normy   D,   A)       DSa<SD) + D1{QA) 

pn.       (S   g,     POA(SD,SA)+ASC(SD,SA) 
POAaorm{SD,SA) = __^__0_ 

The normalized versions are more intuitive in understanding the payoff functions model. The 

defender has an investment worth DSC(SD) + DI(0A) on the attack tree. PODnorm gives the frac- 

tion of this investment protected by the defender's strategy for a particular attack strategy. In other 

words, PODnorm gives the fractional return on investment for the defender. From an attacker's 

perspective, the best it can do is gather the payoff from maximum damage and also retain the cost 

incurred while doing so to itself. DI(SD<SA) is the amount that it actually derives. POAnorm is thus 

the fractional return on attack to the attacker. 

The defender's optimization problem is to find a defense strategy So that gives maximum 

PODnorm under all possible attack strategies. The attacker's optimization problem is to find an 

attack strategy §A that gives maximum POAn0rm under all possible defense strategies. We want 

to emphasize here that solving just one problem is not sufficient. For example, assume that the 

defender has found the optimal solution to its problem. The PODn0rm reported by the solution 

implicitly assumes that the attacker will launch the strategy SA that gives the highest attacker 

payoff - established in the optimization problem by the relation. If the attacker also solves its 

own optimization problem, there is no guarantee that the best strategy found by it is the same SA 

as found in solving the defender's optimization problem. The outcome in this case could be that 

both the attacker and the defender get sub-optimal payoffs. This implies the requirement to solve 

both problems simultaneously, the desired solution being the so called Nash equilibrium in game 

theory parlance [32]. The equilibrium defense and attack strategy pair So and SA satisfy the con- 

ditions PODnorm{SD\s/) > PODnorm{SD,S/) and POAn0rm(SD\s/) > POAnorm{SD\SA) for 

any given defense strategy SD(/ Sp ) and attack strategy SA(^SA ). 

6.5    Conclusion 

We addressed the security provisioning problem in pervasive computing environment, namely, 

how to select a subset of security hardening measures from a given set so that the total cost of 

implementing these measures is not only minimized but also within budget and, at the same time, 

the cost of residual damage is also minimized. We developed two models to address this problem 

- a initial simplistic model that does not consider the attacker's perceptions about cost to break the 

system, and a second one that includes this cost. 
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In a related work [11], which we do not include here for lack of space, we show how workflow 

profiles can be used to capture the contexts in which a communication channel can be used in a 

pervasive environment. We formulate a set of constrained multi-objective optimization problems 

that minimize the residual damage and the maintenance cost incurred to keep the workflow secure 

and ninning. 

Both these models take a static approach to security provisioning. There is however a dynamic 

aspect to the security planning process. For every attack, there is a certain probability of occurrence 

that can change during the life time of a system depending on what the contributing factors for the 

attack are and how they are changing. During run time, the system administrator may need to 

revise her decision based on such emerging security conditions. The next step in this work is to 

model this dynamic aspect. We have developed a preliminary model to address this problem that 

appears in our paper [38]. 
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Chapter 7 

Controlled Disclosure of Location 
Information 

Pervasive computing applications typically use mobile devices that capture the locations of the 

user. The location information is used to provide better services. Often such applications need 

continuous location-based services (LBS) where the mobile object must periodically communicate 

its location to the service provider. One serious concern is the potential usage of of the location 

data to infer sensitive personal information about the mobile users. With access to the location 

data, sender anonymity can be violated even without the capability to track a mobile object. We 

refer to this class of adversaries as location-unaware adversaries. Such adversaries use external 

information to perform attacks resulting in restricted space identification, observation identification 

and location tracking [17]. 

Location obfuscation is one of the widely researched approaches to safeguard location anonymity. 

This technique guarantees that the location data received at the LBS provider can be associated 

back to more than one object - to at least k objects under the location k-anonymity model [17]. For 

this, a cloaking region is communicated to the service provider instead of the actual location. A 

fc-anonymous cloaking region contains at least k - 1 other mobile objects besides the service user. 

However, this approach is not sufficient to preserve privacy in a continuous LBS. In the continu- 

ous case, an object maintains an ongoing session with the LBS, and successive cloaking regions 

may be correlated to associate the session back to the object. Such session associations reveal the 

trajectory of the involved object, and any sensitive information thereof. Assuring that every cloak- 

ing region contains k objects is not sufficient since the absence of an object in one of the regions 

eliminates the possibility that it is the session owner. Performing such elimination is much easier 

for a location-aware adversary who has the capability to monitor users. This class of adversaries 

has exact location information on one or more objects and uses it to eliminate possibilities and 

probabilistically associate the session to consistently existing objects. 

Session association attacks can be avoided if it can be assured that every cloaking region in a 
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Figure 7.1: Schematic of the system architecture 

session contains k common objects. This is referred to as historical k-anonymity [5]. However, as 

a result of the movement of objects, a historically A'-anonymous cloaking region is very likely to 

grow in size over time, thereby deteriorating service quality. In this work, we make an attempt to 

identify the issues involved with effectively enforcing historical ^-anonymity. 

The rest of the chapter is organized as follows. Section 7.1 presents the architecture of our 

system and some observations on historical ^-anonymity. Section 7.2 describes our anonymization 

algorithm CANON that enforces historical ^-anonymity. Section 7.3 compares the performance 

of CANON with that of an existing one, namely, ProvidentHider, that also provides historical k- 

anonymity. Section 7.4 concludes the paper. 

7.1    System Architecture 

Figure 7.1 depicts our system consisting of three layers - (i) mobile objects, (ii) a trusted anonymity 

server, and (iii) a continuous LBS provider. The trusted anonymity server acts as a channel for 

any communication between mobile objects and continuous LBS providers. A mobile object O 

initiates a service session by registering itself with the anonymity server. The registration process 

includes the exchange of current location information (O.loc) and service parameters signifying 

the request to forward to the LBS provider, as well as the anonymity level (O.k) to enforce while 

doing so. The anonymity server issues a pseudo-identifier and uses it both as a session identifier 

(0.sid) with the mobile object and as an object identifier when communicating with the LBS 

provider. A set of cloaking regions is then generated for the requesting object and multiple range 

queries are issued to the LBS provider for these regions. Communication between the anonymity 
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Figure 7.2: Conventional ^-anonymity and historical A:-anonymity. 

server and the LBS provider is always referenced using the object identifier so that the LBS can 

maintain service continuity. The candidate results retrieved from the LBS provider are filtered at 

the anonymity server and then communicated to the mobile object. Subsequent location updates 

from the mobile object are handled in a similar fashion (with the pre-assigned session identifier) 

until the anonymity level cannot be satisfied or the service session is terminated. A request is 

suppressed (dropped) when the anonymity requirements can no longer be met within the same 

service session. A new identifier is then used if the mobile object re-issues the same request. We 

further assume that an object does not change its service parameters during a session. A separate 

session is started if a request with different service parameters is to be made. Therefore, an object 

can have multiple sessions running at the same time, each with a different session identifier. 

7.1.1    Historical A-anonymity 

The primary purpose of a cloaking region is to make a given mobile object o indistinguishable 

from a set of other objects. This set of objects, including O, forms the anonymity set of O. Objects 

in the anonymity set shall be referred to as peers of O and denoted by O .peers. A cloaking 

region for O is usually characterized by the minimum bounding rectangle (MBR) of the objects 

in O .peers. Larger anonymity sets provide higher privacy, while at the same time can result in 

reduced service quality owing to a larger MBR. Therefore, the cloaking region is typically required 

to achieve an acceptable balance between anonymity and service quality. 
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Consider the movement pattern of the objects depicted in Figure 7.2. A 3-anonymous MBR 

is computed for 0\ during three consecutive location updates. If O] 's requests at the three time 

instances are mutually independent from each other, then the privacy level of 0\ is maintained at 

3-anonymity across the different MBRs. However, when the same identifier is associated with all 

the MBRs (as in a continuous LBS), it only requires an adversary the knowledge of 0\. Oi and O3 's 

positions at time t\. h and /3 to infer that the requests are being issued by object 0\. This is because 

0\ is the only object common across the anonymity sets induced by the cloaking regions. We refer 

to this as a case of full disclosure. Assuming that each object is equally likely to be included in 

another object's cloaking region, the probability of full disclosure is unacceptably high. 

Remark 1: Let A \,... ,An be a sequence of anonymity sets corresponding to n > 1 consecutive 

A'-anonymous cloaking regions for a mobile object O, generated from a collection of TV mobile 

objects. Then, the probability that the intersection of the anonymity sets Sn = HAj has at least p 
i 

objects, p > 1, is (pP-^y. 

Remark 2: If k < '^- then the probability of full disclosure is at least |. The full disclosure 

risk is given as £>/„// = Pr(\sn\ = 1) = Pr{\Sn\ S 1) — Pr(\<Sn\ ä 2). Since intersection of the 

anonymity sets contain at least one object, we have Pr(\sn\ > 1) = L Hence, <D fun — 1 - (^ry)"- 

With k < *fi, or fä < i, we have Dfull > 1 - £ > 1 _ £ = 1. 

We also observe in Figure 7.2 that it does not require knowledge on the objects' locations at all 

three time instances in order to breach O] 's privacy. In fact, location knowledge at time instances t\ 

and h is sufficient to lower 0\ 's privacy to 2-anonymity. This is referred to as a partial disclosure. 

Such disclosures occur when the intersection of anonymity sets (corresponding to the same object) 

contain less than the desired number of peers (the anonymity level k). 

A straightforward extension of the conventional A:-anonymity model that can counter risks of 

full and partial disclosures in a continuous LBS is to ensure that all anonymity sets within a service 

session contain at least k common objects. 

Remark 3: Historical A-anonymity. Let A\,... ,An be a sequence of anonymity sets corre- 

sponding to the cloaking regions with the same identifier and at time instants t\. — /„, /, > tj 

for / > j, respectively.   The anonymity set Aj is then said to satisfy historical ^-anonymity if 

\A\n...r\Ai\ >k. 

In other words, the sequence of anonymity sets preserve historical /.--anonymity if all subse- 

quent sets after A \ contain at least k same objects from A \. Figure 7.2 depicts how the cloaking re- 

gions should change over time in order to ensure that object 0\ always has historical 3-anonymity. 

7.1.2    Implications 

Historical ^-anonymity impedes session association attacks by location-aware adversaries. How- 

ever, maintaining acceptable levels of service can become increasingly difficult in case of historical 
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A-anonymity. We have identified three issues for consideration that impact the practical usage of 

historical /:-anonymity. 

Defunct peers: A defunct peer in an anonymity set is an object that is no longer registered 

with the anonymity server. As a result, it can no longer be ascertained that a cloaking region 

includes the peer. If the first cloaking region generated during a particular session contains exactly 

k objects, then every other anonymity set in that session must contain the same k objects for it to be 

historically A-anonymous. A defunct peer in this case does not allow subsequent cloaking regions 

to satisfy historical A-anonymity and introduces possibilities of partial disclosure. 

Diverging peer trajectories: The trajectories of peers influence the size of a cloaking region 

(satisfying historical A-anonymity) over time. Refer to Figure 7.2. The MBR for object 0\ becomes 

increasingly larger owing to the trajectory of object O3. Bigger cloaking regions have a negative 

impact on service quality. In general, the more divergent the trajectories are, the worse is the effect. 

Algorithms that use a maximum spatial resolution will not be able to facilitate service continuity 

as spatial constraints will not be met. 

Locality of requests: The significance of a particular service request can often be correlated 

with the locality where it originated. For instance, let us assume that the region shown in Figure 

7.2 corresponds to an urban locality. Further, object 0\ issues a request to periodically update 

itself with information (availability, price, etc.) on the nearest parking garage. At time instance t\, 

an adversary cannot infer which object (out of 0\, O2 and O3) is the actual issuer of the request. 

However, as O3 moves away from the urban locality (suspiciously ignoring the high concentration 

of garages if it were the issuer), an adversary can infer that the issuer of the request is more likely 

to be 0\ or O2. We say that these two objects are still in the locality of the request. If historical 

A-anonymity is continued to be enforced, O3 (and most likely O2 as well) will be positioned in 

different localities, thereby allowing an adversary infer with high confidence that 0\ is the issuer 

of the request. Note that these three issues are primarily applicable in the context of a continuous 

LBS. 

7.2    The CANON Algorithm 

We propose CANON which is an anonymization algorithm that enforces historical A-anonymity 

for use with a continuous LBS. An overview of this algorithm is given by Procedure 1. 

CANON is initiated by the anonymity server whenever it receives a request from a mobile 

object O. The algorithm starts by first checking if O has an open session with respect to the current 

request. If it finds one then the set of peers is updated by removing all defunct peers from the 

set. Otherwise, a peer set is generated for O through a procedure CreatePeerSet and a session 

identifier is assigned. The newly generated (or updated) peer set must have at least o.k objects in 

order to continue to the next step; otherwise the request is suppressed and the session is terminated. 
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Procedure 1 CANON(Object o) 
Input: Mobile object o (includes all associated data). 
Output: A set of peer groups (one of them includes 0); null if request is suppressed (cannot satisfy 

anonymity). 
1: if (O.sid = null) then 
2:       O .peers = CreatePeerSet{ O) 
3:      0.sid = new session identifier 
4: else 
5:      remove defunct objects in 0.peers 
6: end if 
7: if (\o.peers\ < O.k) then 
8:       O.sid =nu\\ 
9:       return null 

10: end if 
11: peerGroups = PartitionPeerSet(O) 
12: if (3g ^peerGroups such that |g| < 2) then 
13:       0.sid= null 
14:       return null 
15:  end if 
16:  return peerGroups 

If the number of peers, O. peers generated by CreatePeerSet is less than O.k, then the algorithm 

terminates as historical /r-anonymity cannot be ensured. The next step is to divide the peer set 

into groups over which the range queries will be issued. A peer group is defined as a subset of 

O .peers. PartitionPeerSet divides O .peers into disjoint peer groups. Each peer group defines a 

smaller cloaking region than that defined by the entire peer set and reduces the impact of diverging 

trajectories on service quality. The peer groups returned by CANON are used to issue multiple 

range queries (one for each) with the same object identifier. Finally, the algorithm checks that each 

group contains at least two objects in order to avoid the disclosure of exact location information to 

location-unaware adversaries. 

7.2.1    Handling defunct peers 

As mentioned earlier, defunct peers can influence the lifetime of a service session by reducing the 

peer set size to below the limit that satisfies historical A-anonymity. The resolution is to include 

more than k objects in the first peer set. This is achieved in CANON as follows. It uses an oversize 

factor T that relatively specifies the number of extra peers that must be included in the peer set. The 

minimum initial size of the peer set of an object O is equal to (1 -fi) X o.k with this strategy. We 

say "minimum" because other parameters introduced later can allow more peers to be included. 

Note that since CANON partitions the peer set into further groups before issuing a query, the area 

of the cloaking region defined by the enlarged peer set has little or no influence on service quality. 
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However, we would still not want the area to expand extensively in order to curb the issue of 

request locality. 

7.2.2    Deciding a peer set 

The CreatePeerSet procedure determines the initial peer set for an object. At this point, we need 

to ensure that majority of the objects in the peer set are in the locality of the request. We believe 

there are two requirements to address in this regard. 

1. Objects in the peer set should define an area where the request is equally significant to all 

the peers. 

2. Objects in the peer set should move so that the defined area does not expand too much. 

The first requirement will prohibit the inclusion of peers that are positioned in a locality where 

the issued request is unlikely to be made. The second requirement addresses locality of requests in 

the dynamic scenario where the trajectories of the peers could be such that they are positioned in 

very different localities over time. Preventing the MBR of the peer set from expanding prohibits 

peers from being too far away from each other. The first requirement can be fulfilled by choosing 

peers according to the Hubert Cloak algorithm. Peers chosen according to Hubert indices will 

induce a small MBR, thereby ensuring that they are more likely to be in the same locality. However, 

a peer set generated by this process cannot guarantee that the second requirement will be fulfilled 

for long. This is because the neighbors of an object (according to Hubert index) may be moving in 

very different directions. 

It is clear from the above observation that the direction of travel of the objects should be ac- 

counted for when selecting peers. The direction of travel is calculated as a vector from the last 

known location of the object to its current location, i.e. if 0.loc\ = (x\ }y\) and O.I0C2 = (^2^2) 

are the previously and currently known positions of O respectively, then the direction of travel is 

given as O.dir — O.loci - oAoc\ = {xi — x\,yi -y\). O.dir is set to (0,1) (north) for newly reg- 

istered objects. A ^-neighborhoodfbr O is then defined as the set of all objects whose direction of 

travel is within an angular distance 0 (say in degrees) from O.dir. Therefore, a 0°-neighborhood 

means objects traveling in the same direction, while a 180°-neighborhood contains all objects. If 

all peers are chosen within a 0°-neighborhood then it is possible that the area defined by the initial 

peer set will more or less remain constant over time. However, the initial area itself could be very 

large due to the non-availability of such peers within a close distance. On the other hand, using a 

180°-neighborhood essentially allows all objects to be considered and hence the area can be kept 

small by including close objects. Of course, the area may increase unwantedly over time. Peer 

set generation is therefore guided by two system parameters in CANON - the neighborhood step 

size 6 and the fall-MBR resolution oc/M//. The neighborhood step size specifies the resolution at 

which the 9-neighborhood is incremented to include dissimilar (in terms of travel direction) peers. 
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Procedure 2 CreatePeerSet( Object o) 

L — set of available mobile objects sorted by their Hubert index 
i0/ = (l-fT)xoi;!P =<♦> 
repeat 

for all (/ G £ in order) do 
if (|£c| > £0/ and AreaMBR(LcU{/})> a/«//) then 

break 
end if 
£C = £CU{/} 

end for 
Pprev = <P\f= \',Opivot = first object in Lc 

repeat 
<P = (/9)-neighbors of Op/v0, in £c 

/ = /+! 
until (|2>j>min(Ao/,|£c|)) 
£ = £ -2> 

until (0 €5>) 
if(|2>|<£o/)then 

else if (|£ | <£o/)then 
T = <PUL 

end if 
return !P 

The full-MBR resolution specifies some area within which the issued request is equally likely to 

have originated from any of the included objects, thereby making it difficult for an adversary to 

eliminate peers based on position and request significance. For small values of 0 and some a/■„//, 

all objects in a peer set would ideally move in a group, in and out of a locality. Procedure 2 outlines 

the pseudo-code of CreatePeerSet. We assume the existence of a function Area MB R that returns 

the area of the minimum bounding rectangle of a set of objects. 

CreatePeerSet first creates a sorted list £ of all registered objects according to their Hubert 

indices. It then continues to divide them into buckets (starting from the first one in the sorted 

list) until the one with O is found. Every time a bucket is formed, £ is updated by removing all 

objects in the bucket from the list. We now describe how to get a set £c of candidate objects that 

can potentially form a bucket. Starting from the first available object in £, we continue to include 

objects in Lc as long as the minimum peer set size (denoted by k0f and decided by the oversize 

factor) is not met, or the area of the MBR of included objects is within the full-MBR resolution. 

Note that, as a result of this condition, the minimum required size of the peer set receives more 

prominence than the resulting area. Hence, the full-MBR resolution is only a guiding parameter 

and not a constraint.   Next, the algorithm selects kQf objects from the candidate set to form a 
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Procedure 3 PartitionPeerSet(Object O) 
Input: Mobile object o (includes all associated data) and system global asui,. 
Output: A set of peer groups. 

1: Sort objects in O .peers by their Hubert index 
2: peerGroups = <J> 
3: bucket = <{> 
4: for all (/ € O.peers in order) do 

if (AreaMBR(bucketU{l}) < a^b) then 
6: bucket = buckets {1} 
7:      else 
8: peerGroups = peerGroups U {bucket} 
9: bucket - {/} 

10:      end if 
11: end for 
12: peerGroups —peerGroups U {bucket} 
13: return peerGroups 

bucket. The first object in Lc is chosen as a pivot and all objects in the 0-neighborhood of the pivot 

are included in the bucket. If the bucket is not full up to its capacity (k0/) and more objects are 

present in Lc% then the neighborhood is increased by the step size 6. By the end of this process, the 

bucket would either contain k0f objects or there are less than k0f objects in Lc. The latter is only 

possible when list L contains less than k0/ objects, i.e. the last bucket is being created. Once the 

bucket with 0 is found, two more checks are required. First, if O 's bucket has less than k0/ objects 

(possible if it is the last one), then it is merged with the previous bucket. Second, if the number of 

objects remaining in L is less than k0/ (implying o 's bucket is second to last), then the remaining 

objects are included into O 's bucket. 

CreatePeerSet uses 9-neighborhoods and the full-MBR resolution to balance between dissimi- 

lar peers and the resulting MBR area. While the step size 6 allows incremental selection of dissimi- 

lar peers, CLfuu guides the extent of increment admissible to generate a localized peer set. Note that 

the creation of a peer set is a one time procedure every service session. Hence, a good estimation 

of the direction of travel is required to avoid diverging trajectories. CANON uses an instantaneous 

direction vector, since we believe this method performs reasonably well in road networks. 

7.2.3    Handling a large MBR 

The full-MBR resolution parameter is used to control breaches related to request localities. Typical 

values are in the range of 10 to 50km2. The parameter is therefore not intended to help generate 

cloaking regions with small MBRs. A continuous LBS would require a much finer resolution to 

deliver any reasonable service. Further, depending on variations in velocity and the underlying road 

network, some extent of expansion/contraction of the MBR is very likely. The MBR of a peer set 

is therefore not a good candidate to issue the range queries. Instead, the peer set is partitioned into 

83 



multiple disjoint groups by PartitionPeerSet. Partitioning of the peer set eliminates empty spaces 

between peers (introduced in the first place if trajectories diverge) and produces smaller MBRs 

for the range queries [49]. This partitioning is done such that each peer group has a maximum 

spatial resolution. In CANON, the maximum spatial resolution of a peer group is specified as the 

sub-MBR resolution avw/,. asu/> is relatively much smaller than a/w//. Procedure 3 outlines the 

partitioning method. 

The partitioning is performed in a manner similar to Hubert Cloak, with the difference that 

each bucket now induces an area of at most asub instead of a fixed number of objects. Starting 

from the first object in the Hilbert-sorted peer set. an object is added to a bucket as long as the 

sub-MBR resolution is met; otherwise the current bucket is a new peer group and the next bucket 

is created. We do not handle the case when a peer group contains only one object. Our CANON 

algorithm checks that such groups do not exist (safeguard against location-unaware adversaries); 

otherwise the request is suppressed. However, the partitioning algorithm itself can relax the sub- 

MBR resolution when a peer group with a single object is found. The manner in which such 

relaxations can be done will be addressed in a future work. 

7.3    Empirical Study 

The experimental evaluation compares the performance of CANON with the ProvidentHider al- 

gorithm. For every new request, ProvidentHider first groups all available objects from a Hilbert- 

sorted list such that each bucket holds O.k objects; more if adding them does not violate a maxi- 

mum perimeter (Pmax) constraint. The peer set of an object is the bucket that contains the object. 

A range query is issued over the area covered by the objects in the peer set only if the maximum 

perimeter constraint is satisfied; otherwise the request is suppressed. Refer to [31] for full details 

on the algorithm. We measure a number of statistics to evaluate the performance. 

• service continuity: average number of requests served in a session 

• service failures: percentage of suppressed requests 

• safeguard against location-unaware adversaries: average size of the peer group to which 

the issuing object belongs 

We have generated trace data using a simulator [14] that operates multiple mobile objects based 

on real-world road network information available from the National Mapping Division of the US 

Geological Survey. We have used an area of approximately 168 km2 in the Chamblee region of 

Georgia, USA for this study. 

The used traffic volume information (Table 7.1) results in 8,55 8 objects with 34% on express- 

ways, 8% on arterial roads and 58% on collector roads. The trace data consists of multiple records 
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road type traffic volume mean speed standard deviation 

expressway 2916.6 cars/hr 90km/hr 20km/hr 
arterial 916.6 cars/hr 60km/hr 15km/hr 

collector 250 cars/hr 50km/hr lOkm/hr 

Table 7.1: Mean speed, standard deviation and traffic volume on the three road types. 

spanning one hour of simulated time. A record is made up of a time stamp, object number, x and 

v co-ordinates of object's location, and a status indicator. The status indicator signifies if the ob- 

ject is registered to the anonymity server. An object's status starts off randomly as being active or 

inactive. The object remains in the status for a time period drawn from a normal distribution with 

mean 10 minutes and standard deviation 5 minutes. The status is randomly reset at the end of the 

period and a new time period is assigned. The granularity of the data is maintained such that the 

Euclidean distance between successive locations of the same object is approximately 100 meters. 

Each object has an associated k value drawn from the range [2,50] by using a Zipf distribution 

favoring higher values and with the exponent 0.6. The trace data is sorted by the time stamp of 

records. 

During evaluation, the first minute of records is used only for initialization. Subsequently, the 

status of each record is used to determine if the object issues a request. Only an active object is 

considered for anonymization. If the object was previously inactive or its prior request was sup- 

pressed, then it is assumed that a new request has been issued. Otherwise, the object is continuing a 

service session. The anonymizer is then called to determine the cloaking region(s), if possible. The 

process continues until the object enters an inactive (defunct) state. Over 2,000,000 anonymization 

requests are generated during a pass of the entire trace data. 

Default values of other algorithm parameters are set as follows: x = 0.0, oc/M// = 25 knr, 

asub = 1 km2, 6 = 180° and Pmax = 5000 m. A 5000 m perimeter constraint for ProvidentHider 

is approximately an area of \.6km2. Compared to that, a^ has a smaller default value. The 

precision is around 1000 m (assuming a square area) which serves reasonably well for a Pay-As- 

You-Drive insurance service. The full-MBR resolution of 25 km2 evaluates to a locality about ^ 

the size of New York City. The entire map is assumed to be on a grid of 214 x 214 cells (a cell 

at every meter) while calculating the Hubert indices [30]. Objects in the same cell have the same 

Hubert index. 

The following points summarize the results from the experimental study. The detailed analysis 

appears in our related paper [12]. 

• CANON has a superior performance compared to ProvidentHider in maintaining longer 

service sessions across a wide range of anonymity requirements. More requests are also 

successfully anonymized by CANON. 

• Including a small number of extra objects in a peer set is advantageous in handling defunct 
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peers. However, extremely large peer sets can be detrimental. 

• Use of direction information during the formation of a peer set does help avoid peers drifting 

away from each other over time. Choice of a too small neighborhood affects service quality, 

but is not necessary to balance performance across different measures. 

• Performance is better with larger sub-MBR resolutions. However, performance in high pre- 

cision services may be improved with a good strategy to relax the constraint. 

• Service continuity is marginally different for different full-MBR resolutions. However, fail- 

ure to serve new requests is much lower with smaller resolutions. 

7.4    Conclusion and Future Work 

Owing to the limitations of ^-anonymity in a continuous LBS, an extended notion called historical 

A'-anonymity has been recently proposed for privacy preservation in such services. However, all 

known methods of enforcing historical A'-anonymity significantly affects the quality of service. 

In this paper, we identified the factors that contribute towards deteriorated service quality and 

suggested resolutions. We proposed the CANON algorithm that delivers reasonably good service 

quality across different anonymity requirements. The algorithm uses tunable parameters to adjust 

the size of a peer set, trajectories of peers and cloaking regions over which range queries are 

issued. Immediate future work includes optimizing the performance of CANON in terms of better 

usage of directional information. We believe this optimization is crucial in order to have similar 

performance across all levels of anonymity requirements. Merging location anonymity and query 

privacy in a continuous LBS is a natural extension of this work. 
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Chapter 8 

Designing Secure Pervasive Computing 
Applications 

Pervasive computing applications are extremely complex; they have to satisfy functional as well as 

non-functional requirements, such as security. Moreover, security requirements are not confined 

to one module of the application, but must be consistently applied to all the modules. Due to the 

complexity of such applications, security cannot be added as an afterthought but must be addressed 

during the very early stages while the application is being designed. 

In this work, we provide a methodology for designing such applications and getting assurance 

that the security properties are indeed satisfied. Often times, a security property can be satisfied by 

multiple security solutions. The solutions may differ with respect to the amount of protection they 

offer, the cost, the resource constraints, and other parameters. In such cases, we demonstrate how 

to do a trade-off analysis to identify the security solution that best meets the project goals. 

The rest of the chapter is organized as follows. Section 8.1 presents an overview of our aspect- 

oriented risk-driven methodology. Section 8.2 discusses in details our security analysis and trade- 

off analysis techniques. Section 8.3 illustrates our approach using an example e-commerce appli- 

cation. Section 8.4 concludes our paper with a pointer towards future directions. 

8.1    Aspect-Oriented Risk-Driven Development Methodology 

Pervasive computing applications are exceedingly complex. Complex software is not designed 

as a monolithic unit, but it is decomposed into modules on the basis of functionality. Security 

concerns are not confined to one module of the application but impact its multiple components. 

Thus, security solutions used for thwarting these attacks must be consistently applied across these 

various components. We advocate the use of aspect-oriented methodologies for designing secure 

pervasive computing application. Aspect-oriented methodologies provide a modular approach to 
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developing and reasoning of such cross-cutting features that impact multiple components. 

We use the Unified Modeling Language (UML) to specify our models as it is the de facto 

software specification language used in the industry. Specifically, we represent our models using 

UML 2.0 [34]. The models typically consist of both static class diagrams and dynamic behavior 

diagrams. We demonstrate dynamic behavior specified as sequence diagrams, but these diagrams 

are not a requirement of the techniques we use. We find that sequence diagrams are especially 

convenient when dealing with behavior such as security protocols, and since our examples use 

such protocols we have chosen to utilize sequences in our modeling and analyses. 

Our aspect-oriented methodology is composed of several steps. The process starts with system 

architects and designers creating models that describe the functionality of the system. We refer 

to these functional models as primary models. Note that, the primary models describe just the 

functionality of the system - the security mechanisms have not yet been incorporated into these 

models. 

Once we have an initial functional design, designers must perform a risk assessment of the 

application. During this process, the system stakeholders (e.g. end users, designers, developers, 

and management) identify sensitive system assets which can be targeted by attackers. Different 

stakeholders can place different values on an asset, so the stakeholder and the value they assign to a 

particular asset are both needed in our methodology. Designers must develop security requirements 

for these assets and identify threats against them, with the aid of security standards such as ISO 

14508: Common Criteria [19] and ISO/1EC 13335-5: Guidelines for Management of IT Security 

[21]. Designers and security experts must also rank the threats. Designers also identify potential 

security solutions that can mitigate specific risks, as part of the assessment process. 

We model the attacks as aspects as they are not confined to one module of the application. 

Similarly, security solutions are also modeled as aspects. Aspects make it easier for designers to 

understand, manage and change these models separately. Since models are developed separately, 

a library of reusable attack and security solution models is feasible. Our work uses two types of 

aspects. & generic aspect is reusable across applications and it can be thought of as a template that 

must be instantiated. It is specified using parameterized notations. We instantiate a generic aspect 

by binding its parameters to elements in the primary model to create a context-specific aspect. 

We compose context-specific aspects with primary models to create design models in which the 

aspect has been integrated. In order for composition to produce a meaningful model, the models 

being composed must be specified at similar levels of abstraction. However, we do not require any 

particular level of abstraction in our techniques and tools. Therefore, designers can compose and 

analyze a set of models at different levels of abstraction to produce different kinds of information, 

depending on the amount of detail available at a particular point in the design cycle. 

The composition of primary model with the different aspects yield different types of models. 

We compose an attack model with a primary model to create what we term a misuse model. The 



analysis of a misuse model reveals the extent to which the primary model may be compromised 

through application of a successful attack. Composing a security mechanism with a primary model 

yields a security-treated model. A security-treated model represents a system in which some se- 

curity solution has been incorporated into the primary model. In a similar fashion, composing an 

attack model with a security-treated model yields a security-treated misuse model. Analysis of 

security-treated misuse model reveals the efficacy of the security solution in protecting against the 

given attack. 

Often times, multiple security solutions may protect against a given attack. In such cases, 

we need to evaluate which solution best meets the project and security goals. It may be difficult 

for a designer to determine how different parts of the system, designed to meet different goals, 

interact with each other. Performing security analysis in the context of the whole system can help 

a designer understand these interactions better. Performing trade-off analysis can help a designer 

make informed choices when faced with multiple designs that mitigate security threats equally 

well. AORDD trade-off analysis allows designers to analyze various security design solutions 

against properties such as required security levels, and project constraints such as time-to-market, 

budget, and resource constraints at the same time, in a single trade-off analysis. 

8.2    AORDD Analysis 

We approach analysis in AORDD in two steps. First, we perform a formal security analysis to give 

assurance that the system, created by integrating a security solution model, is indeed resilient to 

the targeted attack. We transform a UML misuse model into Alloy and use the Alloy Analyzer 

[25] to reason about its security properties. The results of the analysis either give assurance that 

the security properties exist, or show that they do not. The second step in AORDD analysis is 

to compute a BBN trade-off analysis network. BBN is a powerful technique for reasoning under 

uncertainty, using disparate information [16]. Input to the BBN consists of the evidence from the 

security analysis, risk information from other AORDD steps, and trade-off parameters. The trade- 

off analysis computes a fitness score, showing how well the proposed security solution meets the 

project goals. However, project-specific goals are rarely static over the course of system develop- 

ment, so our BBN topology allows designers to easily change parameters and priorities in real time 

as they explore candidate security solutions. 

Figure 8.1 shows an UML activity diagram that describes the steps in an iteration of AORDD 

analysis. The solid circle and outlined solid circle represent the initial and final states (respectively) 

of an AORDD analysis. Ovals are activities (four in this diagram), and rectangles are objects 

produced or consumed during the activity. Solid arrows show control flow while dashed arrows 

show flow of objects among activities. The dashed arrow into the Security Solution Treatment 

Level parameters object indicates that information from Analyzer results is needed by it. The first 
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Figure 8.1: Steps in AORDD security and trade-off analysis 

three activities produce an evaluation of the security provided by a security solution to protect 

against a successful attack. The fourth activity results in a fitness score for the security solution, 

with respect to security and other trade-off parameters. 

Based on the results of the security evaluation, a designer may decide to iterate the security 

analysis steps with a different security solution prior to performing any trade-off analysis. Simi- 

larly, based on the fitness score, a designer might decide to iterate the trade-off analysis, changing 

the priority of trade-off parameters, or relaxing some of them. In practice, security acceptance cri- 

teria are often relaxed in the face of budget and/or time-to-market constraints. Relaxing constraints 

can have a great effect on fitness score. 

8.2.1    Security Analysis 

We use the UML2Alloy tool to transform a UML model into Alloy. Its input consists of a UML 

class diagram in XML Metadata Interchange (XMI) format [35], and an accompanying OCL [37] 

specification of behavior. We therefore begin with the Abstract & Transform activity as the first 

activity in AORDD analysis. This activity takes as input a UML misuse model that a user creates 

by composing an attack model with either a system model or a security-treated system model. 

A designer must abstract the misuse model to only include elements associated with testing the 

security properties of interest. We use a UML CASE tool, ArgoUML [3], to create the UML class 

diagram and OCL specification. ArgoUML, like most UML tools, allows us to export the model 

in XMI format. 

The next activity, Create Alloy Model using UML2Alloy, applies UML2Alloy to the XMI 

representation. UML2Alloy implements transformation rules to create an Alloy model [1, 2]. This 

model is input to the next activity. Analyze with Alloy Analyzer. The Alloy Analyzer searches the 

state space exhaustively on all possible valid instances of the model, up to the user-specified scope, 

for a counterexample. The output from the analyzer must be interpreted by a human, and be input 

into the BBN topology via computer assistance. If a counterexample is produced, the input to the 

BBN should reflect that the security solution does not provide adequate protection. Otherwise, 

the input represents the analysis assurance that the security solution included in the misuse model 
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provides protection against the attack. 

8.2.2    Trade-Off Analysis 

Our trade-off analysis BBN topology consists of multiple sub-networks that relate to a security 

solution and to security analysis. This is because a simple security analysis output is not sufficient 

for a designer to determine whether a security solution is adequate. Analysis either proves a partic- 

ular successful attack path (misuse) to be executable, or provides evidence that it is not executable. 

However, the existence of an attack path does not imply that the attack will actually happen. It 

means that there exists a possibility of an attack. A successful attack depends on other factors, 

such as the likelihood or frequency of the attack, and the mean time and effort needed to launch a 

successful attack. These latter characteristics in turn depend on the skills, motivation and resources 

of the attacker [20]. Our trade-off analysis takes these characteristics into consideration, along with 

the impact of a successful attack on the value of system assets. We also include the project-specific 

consequence of incorporating a security solution to prevent the attack, such as development cost 

and time, in the form of variables. 

Our trade-off topology consists of four sub-networks. The subnets are shown as object inputs to 

Perform Trade-Off Analysis using BBN Computation activity in Figure 8.1. The information cate- 

gories represented by the trade-off subnets are the static security level variables (SSLE), risk level 

variables (RL), the security solution treatment level variables (SSTL), and the trade-off parameters 

(TOP). 

The SSLE variables represent information regarding the criticality of the system assets, along 

with stakeholder asset value information, that system designers obtain from the risk assessment 

process. The RL variables represent information regarding identified security risks. Designers ob- 

tain part of this information during risk assessment, and part through security analysis of an initial 

system misuse model. Recall that risk assessment is a required step of the AORDD methodology 

that must be performed prior to any analysis. 

SSTL variables represent information relevant for measuring the abilities of a security solution 

to prevent the attack, along with development and maintenance costs. Again, designers obtain part 

of this information through security analysis, and part from the risk assessment process. The TOP 

variables consist of relevant project goals and their relative priorities. This information comes from 

various project stakeholders and decision makers. The trade-off parameters are used to compute a 

fitness score that reflects the ability of the security solution to meet the set of trade-off goals. 

We use the Hugin tool [18] to specify and compute the trade-off topology. We present BBN 

diagrams and computations in this paper using output from this tool. Figure 8.2 shows a Hugin 

representation of the top-level portion of the topology. Each oval section of the topology is a sub- 

network. The topology computes a decision variable Fitness Score (rectangle with thick border) 

for a security solution using four subnets (ovals with dotted and thick outlines). Subnet values and 
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a decision variable utility (diamond) are used to compute the score. 

8.3    Example E-Commerce Application 

We applied our proposed approach on an example e-commerce platform called ACTIVE. ACTIVE 

provides services for electronic purchasing of goods over the Internet [13]. The 1ST EU-project 

CORAS [47] performed three risk assessments of ACTIVE in the period 2000-2003. The risk 

assessment performed by the 1ST EU-project CORAS demonstrated that the ACTIVE login service 

is vulnerable to man-in-the-middle attack, which allows an attacker to intercept information that 

may be confidential. The man-in-the-middle attack may be passive or active. During a passive 

attack, the attacker eavesdrops on the message flow between a requestor and authenticator. By 

contrast, an attacker participates in the communication during an active attack: changing, deleting, 

or inserting messages between the requestor and authenticator. 

8.3.1    Identifying Threats to the E-Commerce Application 

In order to understand the impact a man-in-the-middle attack has on the e-commerce login service, 

we need to generate a misuse model. The misuse model is obtained by composing the primary 

model with the man-in-the-middle attack. Figure 8.3 shows portions of a primary model and a 

generic aspect, in the form of sequence diagrams. The generic attack model in Figures 8.3(b) 

and (c) specify a passive attack; messages pass through the attacker, but are not changed prior to 

forwarding. 

The portion of a primary model in part (a) of Figure 8.3 shows two classes, ActiveClient and 

Login Manager. A message is sent from ActiveClient to execute the requestLoginPage method in 

LoginManager. The result of this operation returns a loginPage message to ActiveClient. Active- 

Client then executes an internal method, ProcessPage. A portion of a generic man-in-the-middle 

attack aspect model is shown in parts (b) and (c) of Figure 8.3. There are three classes, \Sender, 

\Attacker, and [Receiver. The | symbol at the beginning of any name in the generic aspect model 
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Figure 8.4: (a), (b): Context-specific man-in-the-middle, (c): composed model 

serves as an indicator that this element is a parameter that can be bound to elements in the primary 

model that are of the same UML type, prior to model composition. The generic aspect (b) shows 

a message to execute a method called \methodCall to be sent to \Attacker, and from \Attacker 

to {Receiver. There is a response, \reply that is sent back. Part (c) shows behavior that is not 

allowed (indicated by an X mark), that is, some message or reply going directly between \Sender 

and \Receiver. Our composition techniques allow us to specify such elements that will be removed 

prior to composition if they exist. 

We specify bindings of generic aspect parameters to primary model elements of the same type, 

then instantiate the aspect to create a context-specific aspect model, which we compose with the 

primary model. For example, using the models in Figure 8.3, we can specify that \Sender should 

be bound to ActiveClient, \Receiver should be bound to LoginManager, \methodCall should be 

bound to request LoginPage, and \reply to loginPage. There is no corresponding primary model 

element to \Att acker, so our tools automatically create a binding from \Attacker to Attacker. The 

context-specific attack model is shown in Figures 8.4(a) and (b). 

The context-specific attack model is then composed with primary model using our model com- 

position techniques [] to generate the misuse model. Portion of the misuse model appears in Figure 

8.4(c). The analysis of the misuse model indicates that the man-in-the-middle attack is indeed pos- 

sible in the ACTIVE system. 
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8.3.2 Incorporating Security Mechanisms in the Application 

In order to protect against the man-in-the-middle attack, we considered two security solutions. 

The first solution is Secure Remote Password (SRP) [56], and the second one is Secure Sockets 

Layer (SSL) [55]. SSL is an authentication mechanism often used in web applications, and is part 

of commonly available web clients. It operates just above a reliable transport layer (e.g. TCP). 

SRP is an alternative mechanism that is not generally available at lower levels of communication, 

and must be added at the application level. Both mechanisms provide user authentication, data 

confidentiality, and data integrity. SSL is often used to authenticate a server to a client, and can 

also be used to authenticate a client to a server, while SRP always authenticates both parties to 

each other. Confidentiality is provided through symmetric key encryption in both mechanisms. 

SSL provides additional integrity through the use of hashed message digests, while SRP relies on 

encryption to provide integrity. 

We incorporated SRP into the ACTIVE e-commerce system. The security treated system must 

now be analyzed. Specifically, we checked whether the security treated system is prone to man- 

in-the-middle attacks. We generated the misuse model for the SRP treated system by composing 

the context-specific man-in-the-middle attack with the SRP treated e-commerce system. We then 

analyzed the misuse model to check for the possibility of attacks. The analysis involved several 

steps. First, we pruned the security treated model to remove the parts that were not pertinent to 

the analysis. Note that, all the models we have discussed so far including the abstracted model are 

represented in UML and OCL. To automate the analysis, we converted the abstract security treated 

misuse model into Alloy using UML2Alloy tool. The security properties that needed verification 

in the security treated misuse model were formalized in OCL, which were converted into Alloy 

assertions by the UML2Alloy tool. The Alloy Analyzer did not find any property violation, so 

no counterexample was produced for a scope of 20. This proved that incorporating SRP into 

ACTIVE helped protect it against man-in-the-middle attack. We applied the same approach on 

SSL. However, in this case, our analysis produced a counterexample, showing that the SSL security 

treated model is not effective in protecting against active man-in-the middle attacks. However, it 

is resilient against passive man-in-the-middle attacks. 

8.3.3 Trade-Off Analysis of the Security Mechanisms 

After completing the security analysis, we now turn our attention to trade-off analysis. The inputs 

to our trade-off analysis are the various subnets, static security level variables (SSLE), risk level 

variables (RL), security solution treatment level variables (SSTL), and the trade-off parameters 

(TOP), as shown in Figure 8.2. 
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Static Security Level (SSLE) Subnet 

SSLE represents stakeholders' assessment of the value of system assets. There are always multi- 

ple stakeholders' viewpoints regarding system asset value, so the SSLE subnet topology includes 

variables that apply relative weight to a stakeholderäÄZs assessment. The stakeholdersäÄZ assess- 

ment of asset value and the stakeholders' weight are the observable nodes in the subnet. A decision 

node that represents the computation and its accompanying utility node, determines the influence 

of each stakeholder on the outcome of the subnet. For our example, the subnet computation leads 

to an SSLE value of high. 

Risk Level (RL) Subnet 

RL subnet incorporates the risks present in the initial design. All nodes are stochastic and are : (i) 

the average effort an attacker must use to launch a successful attack (METM), (ii) the mean time 

it takes for an attacker to launch an attack (MTTM), (iii) how often an attack will occur (MF), and 

(i\ | the impact of an attack (MI). We derive the value for the risk variables MTTM, METM and 

MF directly from the result of the Alloy security analysis performed on the initial misuse model. 

The security analysis produced a counterexample for the passive man-in-the-middle attack, which 

is a simple attack, and one that requires little time or effort on the part of the attacker. The variable 

values we use, based on these results lead to an RL subnet computation distribution of RL.low = 

0.1, RL.medium = 0.7, and RL.high = 0.2. This probability distribution function indicates that the 

risk level of the initial design is most likely medium. 

Security Solution Treatment Level (SSTL) Subnet 

The SSTL subnet contains variables relating to a security solution and how well it protects target 

assets. The SSTL subnet variables include the extent to which the solution provides security prop- 

erties, its effect on Risk Level (RL) subnet variables METM, MTTM, MF and Ml, and its cost. 

We model the cost as a subnet that combines implementation cost, maintenance cost and time to 

implement. 

The security analysis did not produce a counterexample for the SRP security-treated misuse 

model. In the analysis we used a scope of 20, which for our example gives strong evidence that 

SRP protects the ACTIVE login sequence against active man-in-the-middle attacks. These results 

mean that the security effect (SE) is verified as being high and hence the variables SE on METM, 

SE on MTTM, SE on MI, and SE on MF, are all high. We define the cost of SRP as medium, 

because the code is not shipped with web clients as part of browsers, and thus it must be added 

to both clients and servers at the application level. The resulting computation is the following 

probability density function (pdf) for the target variable SSTL treatment level: SSTL.low = 0.0, 
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SSTL.medium = 0.50, and SSTL.high = 0.50. The interpretation of this pdf is that it is just as 

likely that the treatment level is medium as high and the treatment level will never will be low. 

The Alloy Analyzer security analysis of the SSL security-treated misuse model did produce 

a counterexample for an active man-in-the-middle attack. The counterexample demonstrates an 

attack that does not require more than medium attacker skill, little resources and time, so the 

solution effect is modeled as low. These results mean that all variables related to the effect of 

the security solution on an active man-in-the-middle attack are set to low (SE on METM, SE on 

MTTM, SE on MF, and SE on MI). We define the cost of SSL as low since the code is shipped 

with web clients as part of browsers. 

For the passive version of the attack, the Alloy Analyzer did not produce a counterexample, 

so we infer that the SSL protocol preserves the security properties under this particular attack. Its 

effect on the risk variables MI, MF, METM, and MTTM is therefore high. This is in contrast to the 

active attack, where the security analysis showed that all variables are in the low state. The SSTL 

subnet is configured such that if all security effect variables are in the low state, both the solution 

effect and the resulting treatment level are in the low state, independent of the cost. 

Trade-Off Parameters (TOP) Subnet 

We identify three trade-off parameters of interest, namely, security acceptance criteria (SAC), time- 

to-market (TTM), and budget constraints. Since we need to produce a product in a small time, we 

define a value short for TTM. Our limited resource for incorporating a security solution to prevent 

man-in-the-middle attacks necessitates that we define a value of medium for budget. The SAC 

variable is actually an input node that receives input from an associated subnet which contains a 

node for each of the seven security possible security properties, namely, confidentiality, authentic- 

ity, integrity, accountability, availability, non-repudiation, and reliability. In our example, the first 

three security properties are equally relevant and the corresponding nodes are marked in the high 

state. The other properties are not applicable and are marked with NA. 

We can also specify priorities which the designer can adjust when it is not possible to meet all 

the initial constraints. In our example, the following priorities are assigned: first priority is given 

to TTM, second priority is given to security requirements and third priority is given to budget. The 

priorities can be changed at any point of time and the analysis repeated. 

Comparing SRP and SSL Security Solutions - Fitness Score 

The Hugin tool computes each subnet, using all evidence entered into the topology, and propagates 

the results into the respective observable nodes in the top-level fitness score network, shown in 

Figure 8.2. The fitness score utility function uses a ranked-weight schema. Higher priority trade- 

off parameters are ranked with higher fitness scores so that factors other than security can be taken 
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into account when deciding between alternative security solution designs. This schema also gives 

us the ability to easily change the importance of a trade-off parameter if project circumstances 

change and we need to put more emphasis on meeting a different project goal. The fitness score 

is thus a measure of the degree that a particular security solution meets the security, development, 

project and financial constraints of the project (specified in the TOP subnet). 

The fitness score for the SRP security solution tells us that when the priorities are TTM, SAC 

and budget, the fitness of SRP in mitigating an active man-in-the-middle attack is more than 3 

tunes more likely to be high than low and 1.6 times more likely to be high than medium (16% for 

low, 32% for medium, and 52% for high). Note that these results do not mean that the fitness score 

is high 52 times out of 100, but that our belief is that it will be high more than half the time within 

a particular time frame. 

We compute the fitness score for SSL by changing the Security Solution Treatment Level 

(SSTL) variables in the top-level network in the BBN topology. The computation produces a 

fitness score of 23% for low, 23% for medium, and 54% for high for SSL in the presence of an ac- 

tive man-in-the-middle attack. For a passive man-in-the-middle attack, the result changes slightly 

and becomes 12% for low, 35% for medium, and 53% for high. 

The above results imply that the fitness scores for SRP and SSL with the current trade-off 

parameter priorities differ by a small measure, so either one can be chosen. However, the situation 

changes if the priority of the trade-off parameters changes. If all emphasis is put on security 

requirements, meaning that the trade-off parameter SAC is given a priority of 100man-in-the- 

middle attack are taken into consideration, the fitness score changes to 20% for low, 75% for 

medium, and 5% for high for SRP and 0% for low, 90% for medium, and 10% for high for SSL. 

These results make sense, as the treatment level of SRP is higher than that of SSL in the context of 

the active man-in-the-middle attack. The fitness score is, however, still not completely in favor of 

SRP for two reasons. First, SRP involves a higher cost and time to market than SSL. Second, the 

risk level of the man-in-the-middle attack is most likely medium. SSL has a low treatment level for 

active attacks, but never a low treatment level in the context of passive man-in-the-middle attacks. 

For this the reason the fitness score of SSL turns out to be heavily ranked towards medium when 

both attack types are taken into consideration. 

8.4    Conclusion and Future Work 

Ad-hoc approaches for developing secure systems may result in security breaches. We propose an 

AORDD methodology for designing secure systems. The first step is to perform a risk assessment 

to identify the attacks on the system and evaluate how the assets of the system can be compromised. 

In order to protect against these attacks, security solutions must be methodically incorporated into 

the system.  The resulting system is then formally evaluated to give assurance that it is indeed 
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secure.   Multiple security solutions are often effective in protecting against a given attack, so 
designers must identify and integrate the one that is most suitable for the application. 

In this work, we focussed the case for a single attack. However, in reality, there are multiple 
attacks and multiple security solutions must be incorporated. Moreover, incorporating a security 
solution should not open up new vulnerabilities. Designers can continually augment system de- 
signs by composing additional security solutions to mitigate additional attacks. They can then 
compose multiple attack models with these system models, and analyze them with the Alloy Ana- 
lyzer. However, this approach can be cumbersome for designers, so we hope to provide an easier 
approach for handling multiple attacks. In this respect, we are currently investigating techniques 
that formalize the dependencies between the different types of attacks and security solutions. Such 
formalization will allow us to group attacks and security solutions. This, in turn, will facilitate 
minimizing the time required for security analysis. 
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Chapter 9 

Conclusion 

Pervasive computing applications have some unique constraints that preclude the use of traditional 

security policies and mechanisms for protecting such applications. We investigated the security 

requirements of pervasive computing applications and proposed several solutions. Our first contri- 

bution is proposing new access control models that use contextual information, namely, location 

and time, to provide access control. The model has several features which may interact in subtle 

ways. We showed how such a model can be used for real-world application and analyzed to ensure 

that access control breaches do not occur. We also provided a graph-theoretic semantics that helps 

the user in visualizing the policies and allows the use of graph algorithms to detect problems with 

the specification. 

Pervasive computing applications often involve interaction among entities not all of whom 

are trusted to the same extent. We proposed a formal model of trust, based on subjective logic, 

that allows one to argue about the trustworthiness of entities. The model is also able to quantify 

uncertainty with respect to trust, which is inherent in pervasive computing applications. We also 

demonstrated how the trust model can be used to make access control decisions and how to transmit 

data reliably through a sensor network. 

Pervasive computing applications typically collect contextual information, some of which is 

sensitive in nature. Towards this end, we proposed new models that allow for controlled data 

dissemination. Specifically, we proposed new algorithms for preserving location privacy and we 

also developed metrics with which to compare different privacy algorithms. Data availability also 

plays an important part in pervasive applications. We proposed techniques using which data can 

be efficiently obtained in pervasive computing applications. 

Pervasive computing applications operate in a heterogeneous environment where all the nodes 

in the network may not have the same computation and communication capabilities. We showed 

how to calculate the risk in such environments. We also demonstrated how to do optimal security 

provisioning when all attacks cannot be prevented due to resource constraints. 

Security cannot be added as an afterthought to pervasive computing applications.   Security 
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issues must be addressed at the design phase. We showed how aspect-oriented risk-driven method- 

ology can be used for designing pervasive computing applications, how can we get assurance that 

such a design is correct, and how do we do trade-off among various security properties when all 

properties cannot be satisfied due to various constraints. 

This report highlights the major contributions of the project. Some of the results have not been 

included in this report to save space, though they have briefly mentioned in passing. These can be 

found in our publications, the complete list of which has been included in the report. 

The project has helped us identify a number of open research problems that we plan to address 

in future projects. Our future work involves identifying, formalizing, and quantifying each security 

attribute (confidentiality, integrity, availability, non-repudiation, etc. ) in pervasive computing 

applications. This involves understanding each attribute, identifying the invariant properties of 

these attributes, and the relationship among the attributes. We also plan to understand security 

solutions in more details. For instance, we need to know what attributes are ensured by each 

solution and to what extent. We also need to investigate composability properties of security 

solutions. For example, it is possible that a security mechanism preserves some attribute when 

used in isolation, but may not do so when used in conjunction with another security solution. We 

plan to formalize vulnerabilities and attacks and understand how attacks impact the attributes. An 

attack is possible if some invariant property of a security attribute is destroyed. Enumerating all 

possible ways in which such invariant properties can be destroyed will allow us to predict future 

attacks as well. Once the inherent properties of attributes, attacks, and solutions are understood, 

we can provide better protection against known and unknown attacks. 
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